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1. March 27

Let Σ be a smooth complete curve over Fq, and Σaff an affine open subvariety, and let the
infinity be the set ∞ = Σ− Σaff . Then we have the following analogy:

Z⇐⇒ Fq[Σaff ],

Q⇐⇒ Fq(Σ),

Zp ⇐⇒ Ôx (completed local ring at x ∈ Σ),

Z∞ := R⇐⇒∞.

Definition 1.1. An automorphic function is a C-valued function on

K\GLn(A)/GLn(Q),

where K being the hyperspecial maximal compact subgroup of GLn(A).

For each x ∈ Σ, denote Fx the field of fractions of Ôx, we have the similar setting for Σ:∏
x∈Σ

GLn(Ôx)

∖∏′

x∈Σ

GLn(Fx)

/
GLn(F (Σ)), (1.1)

which is isomorphic to the set |Bunn(Fq)|. The proof being easy (manipulating with triv-
ializations of vector bundles, and double quotient corresponds to changing trivializations).
Denote the space of automorphic functions associated to Σ by A (Σ).

1.1. Hecke Operators. We want to construct many commuting operators on the space of
automorphic functions. For each r = 0, . . . , n, define

H eckr =

{
(V ′, V, x)

∣∣∣∣ V ′ isomorphic to a subsheaf of V,
V/V ′ is a skyscraper sheaf of rank r at x

}
/ ∼

⊂ |Bunn(Fq)× Bunn(Fq)× Σ|.

Also let the projections from H eckr to the isomorphism classes of its three factors |Bunn(Fq)|,
|Bunn(Fq)|, and Σ be pr1, pr2, p respectively.

We can describe H eckr more explicitly. Fix an x ∈ Σ, and choose a local uniformizer t
at x. Let V (x) be the fiber of V at x, and E ⊂ V (x) an r-dimensional subspace. Note we

have a short exact sequence of Ôx-modules

0→ Vx
t→ Vx → V (x)→ 0.
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Let Ẽ be the preimage of E in Vx, and we define V ′ to be the subsheaf of V whose stalks

are Vy for any y 6= x and Ẽ at x. Note V ′ is locally free because Σ is a curve. Therefore, the
fiber of pr2 × p over (V, x) in H eckr is just the Grassmannian Grr(V (x)).

For any point x ∈ Σ, r = 0, . . . , n, define operator

Hr
x : A (Σ)→ A (Σ)

f 7→ (pr2,x)∗(pr1,x)
∗(f).

Note we regard f as a function on |Bunn(Fq)|, and pri is viewed here as maps from H eckr

to |Bunn(Fq)|. Then it’s easy to see Hr
x(f) at any point (a vector bundle) just sums up the

value of f at all subsheaves that have type (1r, 0n−r) at x and are isomorphic elsewhere.

Theorem 1.2. For any x, y ∈ Σ and any r, r′ = 0, . . . , n, the operators Hr
x and Hr′

y commute.

Now we work out some linear algebra for our settings. Let F be a local field with ring of
integers O.

Definition 1.3. A lattice in F n is a finitely generated O-submodule L ⊂ F n such that
L⊗O F ∼= F n.

An example of a lattice would be the standard lattice L0 = On ⊂ F n.

Lemma 1.4. Let L′ ⊂ L lattices, then there exists an O-basis e1, . . . , en of L and integers
m1 ≥ · · · ≥ mn ≥ 0 such that L′ = tm1Oe1 + · · ·+ tmnOen.

Proof. This is just the structure theorem for free modules over a PID. �

Corollary 1.5. Let L,L′ ⊂ L0, then L ∈ GLn(O)L′ if and only if L0/L ∼= L0/L
′.

Corollary 1.6. If L ⊂ L0, then dimFq L0/L =
∑n

i=1 mi, and if we write L = gL0 for some
g ∈ GLn(F ) ∩Matn(O), then val(det g) = dimFq L0/L.

All proofs are very easy. Thus we can describe H eckr in a slightly different way:

H eckr =

{
(V ′, V, x)

∣∣∣∣ there is V ′ → V injective, and isomorphic on Σ \ {x},
V ′x ↪→ Vx has m1 = · · · = mr = 1 and mr+1 = · · · = mn = 0

}
/ ∼ .

An observation is that for any pair of lattices L,L′, there exists some m � 0 such that
tmL′ ⊂ L ⊂ t−mL′. Thus we can choose a basis e1, . . . , en of L such that L′ = tm1Oe1 + · · ·+
tmnOen for some m1 ≥ · · · ≥ mn (i.e. dropping the condition m1 ≥ 0). We can also find
g ∈ GLn(F ) such that L′ = gL (no longer require g ∈ Matn(O)).

Let affine Grassmannian Gr be the set of all lattices in F n, which is isomorphic to
GLn(F )/GLn(O), by above we see that

Gr =
∐

m1≥···≥mn

GLn(O)t(m1,...,mn)GLn(O)/GLn(O),

and equivalently,

GLn(F ) =
∐

m1≥···≥mn

GLn(O)t(m1,...,mn)GLn(O),

which is the Cartan decomposition for GLn(F ).
Let H be the algebra of Hecke operators, X∗ ∼= Zn be the coroot lattice for GLn, C[X∗]

the group ring for X∗, W ∼= Sn the Weyl group of GLn, then we have
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Theorem 1.7 (Satake).

H ∼→ C[X∗]W [q±] = C[T∨]W [q±] ∼= C[G∨]G
∨
[q±],

with basis of characters χ(m1,...,mn).

2. March 29

Let Λ = Zn with Sn acting by permutation. Let G = GLn, k be any field, F = k((t))
the field of Laurent series, and O = k[[t]] the ring of power series. We have defined the
affine Grassmannian Gr to be the set of all rank n O-lattices in F n. The group G(F ) acts
transitively on Gr and the stablizer of the standard lattice L0 = On is G(O). Therefore
Gr = G(F )/G(O).

Definition 2.1. Let (L,L′) be a pair of lattices. A basis adapted to (L,L′) is such v1, . . . , vn ∈
L that L = Ov1 + · · ·+Ovn and L′ = tm1Ov1 + · · ·+ tmnOvn. The adapted basis is said to
have type λ = (m1, . . . ,mn).

Lemma 2.2. (1) Any pair (L,L′) has an adapted basis, and its type λ is unique up to
permutations. In this case we say (L,L′) are in relative position λ mod Sn ∈ Λ/Sn.

(2) Two pairs (L1, L2) and (L′1, L
′
2) are in the same relative position if and only if they

belong to the same orbit of the action of G(F ) in Gr×Gr.

Remark 2.3. Note that for any two groups B ⊂ A, we have natural bijection

A\(A/B × A/B)→ B\A/B
(a, a′) 7→ a−1a′.

Therefore G(F )\(Gr×Gr) ∼= G(O)\Gr ∼= G(O)\G(F )/G(O).

Proof of Lemma 2.2. For the first part, note there exists r � 0 such that trL′ ⊂ L, then by
Lemma 1.4 we can find an adapted basis for (L, trL′). Dividing by tr on the coefficients we
get an adapted basis for (L,L′). The uniqueness can also be seen easily from Lemma 1.4.

For the second part, let v1, . . . , vn be a basis adapted to (L1, L2), and v′1, . . . , v
′
n one to

(L′1, L
′
2). Assume they have the same relative position, then by permuting v′i (possible by

acting by an element in G(F )) we can assume they have the same type. Then we can define
g ∈ G(F ) to be the element sending vi to v′i, then g(L1) = L′1. The same type assumption
says that g(L2) = L′2 as well. The other direction is proved by running the argument
backwards, which is more trivial. �

Since Gr is not of finite type, we now write it as a limit of (projective) varieties. Fix an
integer r > 0, we certainly have trL0 ⊂ t−rL0. Define

Grr = {L ∈ Gr | trL0 ⊂ L ⊂ t−rL0},
we then have Gr = lim−→Grr. We can rewrite it as

Grr ∼= {L/trL0 ⊂ t−rL0/t
rL0
∼= (kn)2r | L/trL0 is t-stable},

where the uniformizer t acts nilpotently on (kn)2r.

Remark 2.4. (1) When k = Fq, Grr is a finite set.
(2) When k = C, Grr is a projective variety.
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(3) The action of t on Grr can be described by coordinates. Choose the standard O-basis
e1, . . . , en for L0, then a k-basis for t−rL0/t

rL0 is tjei (1 ≤ i ≤ n,−r ≤ j < r). Under
this basis, the action of t can be identified with the 2nr × 2nr-matrix

J0 0 · · · 0
0 J0 · · · 0
...

...
. . .

...
0 0 · · · J0

 ,

where J0 is the Jordan block of size 2r with eigenvalue 0.

Denote T ⊂ G the subgroup of invertible diagonal matrices, and N the subgroup of
uppertriangular unipotent matrices.

Lemma 2.5. (1) There is a bijection Λ ∼= GrT (k) identifying λ = (m1, . . . ,mn) with
Lλ = tm1Oe1 + · · ·+ tmnOen, where ei is the standard basis for L0.

(2) We have

Gr =
∐
λ∈Λ

N(F )Lλ,

or equivalently,

G(F ) =
∐
λ∈Λ

N(F )tλG(O).

The latter is called Iwasawa decomposition.

Proof. For the first part, first note that the map λ 7→ Lλ is clearly injective. For surjectivity,
note that the action of T (k) on Gr induces a T (k)-action on V = t−rL0/t

rL0, which commutes
with the action of t. It is clear that any T (k)-stable subspace E ⊂ V has a form E =
E1⊕· · ·⊕En where Ei ⊂

⊕r−1
j=−r k(tjei). If E is in addition t-stable, then Ei =

⊕r−1
j=mi

k(tjei)
for some mi ≥ −r.

For the second part, note any lattice can be transferred through Gaussian elimination with
O-coefficients to some Lλ. �

Now we describe the Hecke operators for curves in a different way. Let Σ be a smooth

projective curve over k, and fix a k-point x ∈ Σ. Let O = Ôx be the completed local ring
at x, and F the fraction field of O. For convenience, let Oout = OΣ−{x}. By Bunn we mean
the stack of vector bundles of rank n on Σ. We claim that

Gr ∼= {(V, ψ) | V ∈ Bunn(Σ), ψ a trivialization of V on Σ− {x}}/ ∼ .

The proof of the claim is straightforward: recall in last lecture we have that the double
quotient (1.1) is isomorphic to |Bunn(k)|, and those with a trivialization over Σ − {x}
correspond to the double coset represented by those with only one factor (i.e. at x) not in
the local integral points. Now we put back the trivialization outside of x, we get the result.

For any λ ∈ Λ/Sn, we define

H eckλx =

{
(V, V ′, ϕ)

∣∣∣∣ ϕ : V |Σ−{x}
∼→ V ′|Σ−{x}

(Vx, V
′
x) in relative position λ in F ⊗O Vx

∼→ F ⊗O V ′x via ϕ

}
/ ∼ .
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Denote still by pr1, pr2 projections to V and V ′ respectively. Let Bun0
n be the substack of

bundles that are trivial on Σ− {x}. Therefore by above discussion we have

pr−1
1 (Bun0

n) = G(Oout)\(Gr×Gr)λ

= G(Oout)\G(F )/ Stab(L0, Lλ),

where the superscript λ denotes the pairs of relative position λ.
In order to describe the alternative description for Hecke algebra, we first state some results

in a more general setting. Let M be a locally compact topological group, and K a maximal
compact subgroup. Choose a Haar measure µ such that µ(K) = 1. Let Cc(K\M/K) be the
C-valued K-biinvariant continuous functions with compact support on M . It is an algebra
under convolution. It can be shown to be naturally isomorphic to Cc(M\(M/K ×M/K))
which also has a natural convolution (with the support conditions for the functions properly
defined).

Remark 2.6. For a space X, and good enough functions f, g on X. The convolution can be
defined by (f, g) 7→ p13,∗(p

∗
12f · p∗23g), where pij are the three projections from X ×X ×X to

X ×X.

When Y is a space with M acting on it, we have a natural action of Cc(K\M/K) on
Cc(Y/K):

Cc(Y/K)⊗ Cc(K\M/K)→ Cc(Y/K)

f ⊗ g 7→ (y 7→
∫
M

f(ym)g(m−1)dm).

Now when Y = {(V, v) | V ∈ Bunn, v is an O basis of Vx}, M = G(F ), K = G(O), we have
Cc(G(O)\G(F )/G(O)) acting on Cc(Y/K).

Theorem 2.7. The algebra Cc(G(O)\G(F )/G(O)) is commutative.

Proof by Gelfand. For general K ⊂ M , suppose we have an anti-involution τ on M such
that τ(KmK) = KmK for all m ∈ M . We claim Cc(K\M/K) is commutative: define τ
acting on Cc(M) by (τf)(m) = f(τ(m)). Then it is easily verified τ(f ∗ g) = τ(g)∗ τ(f). On
the other hand, by assumption on τ , we know τ(f) = f for all f ∈ Cc(K\M/K), we have
τ(f ∗ g) = f ∗ g and τ(f ∗ g) = g ∗ f , so Cc(K\M/K) is commutative. Going back to our
specific case, choose τ to be the transposition of matrices which, by Cartan decomposition,
satisfies the assumption on the anti-involution above, so we are done. �

3. April 3

In this lecture we establish some facts about affine Grassmannian for a general reductive
(actually semisimple only) group, analogous to the GLn case (which is not semisimple hence
it’s not a perfect analogy). Let k be an arbitrary field, F = k(($)) the field of Laurent series
over k, O = k[[$]] the ring of formal power series. Let G be a split reductive group over k,
and we define

GrG := G(F )/G(O).

Let g = LieG, and fix a nondegenerate invariant symmetric bilinear form (·, ·) on g, i.e. for
all x, y, z ∈ g, we have ([x, y], z) + (y, [x, z]) = 0. We can extend it to a bilinear form on
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g(F ) × g(F ) → F . For example, when g = sln, we can choose the Killing form (x, y) =
Tr(ad x◦ ad y), and when G is reductive, we can extend the Killing form from its semisimple
part by putting a nondegenerate symmetric bilinear form (automatically invariant) on its
abelian part, and demanding the two parts orthogonal to each other.

Now assume G is semisimple.

Definition 3.1. A lattice in g(F ) is a finitely generated O-submodule L ⊂ g(F ) such that
L⊗O F ∼= g(F ). The dual lattice L∨ := HomO(L,O), identified as a lattice in g(F ) as well
through the bilinear form (·, ·).

Then we can give another definition of affine Grassmannian:

Gr′G := {L ⊂ g(F ) lattice | [L,L] ⊂ L, and L = L∨}.

We want to connect GrG with Gr′G (i.e. to show they are isomorphic). As usual, we introduce
the standard lattice L0 = g(O), and let G(F ) act on Gr′G by the adjoint action: g : L 7→
Ad g(L). Note that StabG(F ) L0 = G(O), and the action of G(F ) is transitive. Thus we get
Gr′G

∼= G(F )/G(O) = GrG.

Remark 3.2. The two definitions can be seen in methodology parallel to the definitions of
flag varieties. The definition of GrG is similar to defining the flag variety by G/B with some
chosen Borel B, and that of Gr′G is choice-free, thus similar to defining the flag variety by
the functor of points (set of all Borel subgroups in G).

Lemma 3.3. For all lattice L ⊂ g(F ), there exists n � 0 such that $nL0 ⊂ L ⊂ $−nL0.
In other words,

L

$nL0

⊂ $−nL0

$nL0

=: Vn.

Define a bilinear form

βn : Vn × Vn → k

(x, y) 7→ Res$=0(x, y),

where the parentheses on the right hand side denote the bilinear form on g(F ), and Res$=0

simply means taking the coefficient of $−1. It is easy to check that βn is nondegenerate, and
we can describe GrG as a limit of projective varieties:

Grn := {V ⊂ Vn | V is $-stable, maximal isotropic w.r.t. βn, and the 3-form βn([·, ·], ·) = 0 on V },

and Grn comes with a natural structure of a projective variety over k. It is clear that we
have the following isomorphism

{L ∈ GrG | $nL0 ⊂ L ⊂ $−nL0}
∼→ Grn

L 7→ L

$nL0

,

with the maximal isotropic condition on the right corresponding to the self-dual condition
on the left, and after assuming this, the Lie subalgebra condition on the left is equivalent to
the 3-form condition on the right (which instead of putting conditions on L only, translating
some of those conditions to the dual via βn).
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Corollary 3.4. We have GrG = lim−→n
Grn.

The G(O)-action on lattice by conjugation descends to an action on Vn. Let T ⊂ G be a
split maximal torus, and let λ ∈ X∗ = X∗(T ) = Homk(Gm, T ) ∼= ZrkG. We have an element
$λ ∈ T (F ). Similar as before, we let Lλ = Ad$λ(L0). Let t = LieT , Φ ⊂ t∗ the root
system of (g, t), and (by choosing a Borel) fix a set of positive roots. Thus we have the
decomposition

g = t⊕
⊕
α∈Φ

gα = t⊕
⊕
α∈Φ

keα,

where eα is a nonzero vector in g. Therefore we have

g(O) = t(O)⊕
⊕
α∈Φ

Oeα,

and so

Ad$λg(O) = t(O)⊕
⊕
α∈Φ

$〈λ,α〉Oeα,

Assume λ is dominant, then if 〈λ, α〉 ≤ n for all α > 0, then we get $nL0 ⊂ Lλ, and
automatically Lλ ⊂ $−nL0 by self-duality.

We define Grλ to be the G(O)-orbit of Lλ, then Grλ = G(O)/ StabG(O) L
λ. We can

describe the Lie algebra of the stablizer explicitly if λ is dominant and 〈λ, α〉 ≤ n: since
StabG(O) L

λ = G(O) ∩ StabG(F ) L
λ = G(O) ∩ Ad$λ(G(O)),

Lie (G(O) ∩ Ad$λ(G(O))) = g(O) ∩ Ad$λ(g(O))

= t(O)⊕
⊕
α∈Φ+

$〈λ,α〉Oeα ⊕
⊕
α∈Φ−

Oeα.

Thus we can calculate the dimension of Grλ:

dimkGrλ = dimk
g(O)

Lie(StabG(O) Lλ)
=
∑
α>0

〈λ, α〉 = 2〈λ, ρ〉,

where ρ is one half of the sum of all positive roots.
Lie theory tells us that the coroot lattice Q∨ ⊂ X∗ as a finite index sublattice. We also

know from Lie theory that 〈λ, ρ〉 ∈ Z or 1
2
Z if λ ∈ Q∨ or X∗ respectively.

Corollary 3.5. The orbit Grλ is even-dimensional if λ ∈ Q∨.

Now let k = C. Choose a maximal compact subgroup K ⊂ G, and define the (polynomial)
loop space of K

Ω(K) := {polynomial maps f : S1 → K such that f(1) = 1}.

We can view G as embedded in GLn(C) for some n, and polynomial maps from C to G are
simply polynomial maps in coordinates. A polynomial map to K is one that is the restriction
(to S1) of some polynomial map C→ G whose image of S1 lies in K. We then have maps

Ω(K) ↪→ G(C(($)))→ GrG = G(C(($)))/G(C[[$]]).

Theorem 3.6. The composition of the above map Ω(K)→ GrG is an isomorphism.
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The proof for GLn is essentially the Gram-Schmidt process.
Lastly, for a chosen (G,K), we have the simply-connected as well as the adjoint type

isogenus groups Ksc and Kad for K, and the maps

Ksc → K → Kad

being both group quotients and covering maps. Clearly π1(Kad) = Z(Ksc). So if K is the
simply-connected type, we have

π0(Ω(Ksc)) ∼= π1(Ksc) = 1,

and GrGsc is connected. If K is the adjoint type, then

π0(Ω(Kad)) ∼= π1(Kad) = Z(Ksc),

and moreover we have a natural map from GrGsc to GrGad realizing the former as a connected
component of the latter.

4. April 5

This lecture will define the Grassmannian as a scheme (more precisely an ind-scheme).
We deal with the case k = C first, and mention a bit about the mixed characteristic case.
As usual F = k(($)) and O = k[[$]].

Let H be a linear algebraic group, then we can define the functor of arc space of H

H(O) : Alg/k → Sets

R 7→ H(R[[$]]).

Proposition 4.1. This functor is representable by a scheme of infinite type H(O).

Similarly, we can define the functor of loop space of H

H(F ) : Alg/k → Sets

R 7→ H(R(($))).

Proposition 4.2. This functor is representable by an ind-scheme H(F ), i.e. it is a direct
limit (as a functor) of closed embeddings of schemes.

Definition 4.3. The affine Grassmannian GrG is defined to be the quotient of functors (as
fpqc sheaves of groups) G(F )/G(O).

Remark 4.4. (1) The ind-scheme G(F ) is in general not reduced, even for the simplest
groups like Gm;

(2) The quotient map G(F )→ GrG is a G(O)-torsor in the fpqc topology.

4.1. GLn-Case. Let G = GLn, and R a k-algebra.

Definition 4.5. A lattice is a finitely generated projective R[[$]]-module L ⊂ R(($))n such
that R(($))⊗R[[$]] L ∼= R(($))n.

As usual we have the standard lattice L0 = R[[$]]n, and for all lattice L, there exists a
large m such that $mL0 ⊂ L ⊂ $−mL0. To better connect the lattices to the geometric
description of Grassmannians (i.e. through vector bundles), so that we can get vector bundles
not just coherent sheaves, we need this lemma:

Lemma 4.6. The quotient $−mL0/L is a projective R-module.
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4.2. Case of mixed characteristics. In this subsection only, we talk briefly about the
number-theoretic settings. Let k = Fp, O = Zp, and F = Qp. We want to define an
ind-scheme Gr over k such that it represents the functor of Zp-lattices in Qp.

The first step is to define the analogue of lattices. Note that Zp can be seen as the ring
of Witt vectors over k, denoted by W (k), and Qp = W (k)[p−1]. Let R be a k-algebra, it
is tempting to define the R-points of the functor to be finitely generated projective W (R)-
modules inside W (R)[p−1]n of generic rank n. However, if R is non-reduced, then p may be
a zero divisor in W (R), thus W (R) is not a subring of W (R)[p−1].

To remedy this, we can restrict the domain category to all perfect k-algebras, i.e. those R
such that the Frobenius x 7→ xp is bijective.

Lemma 4.7. If R is perfect then p is not a zero divisor in W (R).

Now consider the functor

PerfAlg/k → Sets

R 7→ lattices in W (R)[p−1]n,

then we have:

Proposition 4.8. This functor is representable by an ind-scheme lim−→i
Xi with each Xi a

perfect scheme (affine-locally being the spectra of perfect k-algebras).

However, another problem arises since perfect k-algebras are in general not of finite type,
because usually it is a perfect closure of some k-algebra by taking p-th root over and over
again. Only until recently have people understood a deeper result:

Theorem 4.9 (Bhatt-Scholze, 2015). With the notations above, Xi is a perfection of a
projective variety over k, and the embeddings Xi ↪→ Xi+1 come from the maps of those
varieties.

However, for a general reductive group not much is known yet.

4.3. General reductive group case. For the remaining of this section k = C. We start
with the tori. Let G = T ∼= Gm

n, and X∗ = X∗(T ) = Hom(Gm, T ), X∗ = X∗(T ) =
Hom(T,Gm) be the coweight and weight lattices respectively. We have a natural isomorphism
X∗ ∼= HomZ(X∗,Z), since there exists a perfect pairing

X∗ ×X∗ → Z
(χ, γ) 7→ n,

where χ◦γ = (z 7→ zn). One can also recover T from the lattices by noticing T ∼= Gm⊗ZX∗.
This suggests the definition T∨ = Gm⊗ZX

∗, and it is clear that X∗(T
∨) = X∗ and X∗(T∨) =

X∗. One can also construct T∨ directly from T in this case since topologically, X∗ ∼= π1(T ),
and so T∨ ∼= Hom(π1(T ),Gm), which is the same as rank-1 local systems on T .

It turns out we can largely ignore the non-reducedness of the Grassmannian, thus we will
focus on the underlying space of points. Since F×/O× ∼= Z through valuation, we have as a
space GrT = T (F )/T [[$]] ∼= X∗(T ).

Next we consider G = SLn ⊂ GLn. We claim that GrSLn ⊂ GrGLn . Indeed, we can identify
the former with the lattices in F n satisfying some additional conditions.
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Definition 4.10. For two lattices L,L′ ⊂ F n, we define the relative length

Leng(L,L′) = dimC(L/(L ∩ L′))− dimC(L′/(L ∩ L′)),
necessarily a finite number.

The following is straightforward.

Lemma 4.11. We have the isomorphism (as ind-schemes) GrSLn
∼= {L ∈ GrGLn | Leng(L,L0) =

0}.

We define the determinant bundle on GrSLn by letting the fiber over L be det(L/(L ∩
L0))⊗C det(L0/(L ∩ L0))∨.

Proposition 4.12. The determinant bundle is an ample line bundle on GrSLn hence gives
a projective embedding of GrSLn (as ind-schemes).

The determinant bundle can be generalized to any reductive group G. The loop Lie algebra
g(F ) admits an important central extension

0→ C→ ĝ→ g(F )→ 0,

where ĝ is a Kac-Moody algebra. The construction is explicit: fix a symmetric nondegenerate
invariant bilinear form β : g × g → C, the Kac-Moody algebra is defined as a vector space
simply ĝ = C ⊕ g(F ), on which the cocycle cβ ∈ H2(g(F ),C) for the central extension is
given by cβ(x, y) = Res$=0 β(x, y). The same can be done for groups as well, i.e. we have a
central extension

1→ Gm → Ĝ→ G(F )→ 1,

in which the preimage of G(O) splits. Therefore we have a Gm-torsor

Ĝ/G(O)→ G(F )/G(O) = GrG.

The associated line bundle is the determinant bundle det. For GLn or SLn, the bilinear form
β can be chosen as the Killing form (extended to GLn as in Section 3).

For any simply-connected G, let Vβ = Indĝ
g(O)1c, for which the central character c is some

fixed one, we then have the identification (verify it)

Ĝ = P(V∗β).

4.4. Another example: PGLn. Let G = PGLn = GLn/Gm. It’s not hard to see

GrPGLn
∼= GrGLn/(L ∼ $L).

With this identification, any element in GrPGLn is then represented by some lattice of relative
length r ∈ {0, . . . , n− 1} to L0, and any two elements are in the same connected component
if and only if their relative lengths to L0 are the same ( mod n). For each m = 0, . . . , n− 1,
let

Grm = {L ⊂ L0 | L is the preimage of some m-dimensional subspace of L0/$L0}
∼= Grm(Cn),

the last term being the usual Grassmannian in Cn.

Proposition 4.13. GrPGLn has n connected components, and Grm is the unique closed
G(O)-orbit in the connected component corresponding to m.
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4.5. Cartan and Iwasawa decompositions. This subsection is probably going to be re-
peated in the next lecture. For each λ ∈ X∗(T ), we have $λ ∈ T (F ) ∈ G(F ), hence
$λG(O)/G(O) ⊂ GrG. Let N be a maximal unipotent subgroup.

Theorem 4.14 (Cartan Decomposition).

GrG =
⋃

λ∈X∗(T )

G(O)$λ.

Theorem 4.15 (Iwasawa Decomposition).

GrG =
⋃

λ∈X∗(T )

N(F )$λ.

To prove these we need a lemma.

Lemma 4.16.

(GrG)T ∼= {$λ | λ ∈ X∗}.

Sketch of the Proof (to be finished next lecture). Choose a sufficiently general one-parameter
subgroup γ : Gm → T such that (GrG)γ = (GrG)T . Any G(O)-orbit X in GrG is a projective
variety (why?), and is γ-stable. Fix a point x ∈ X, and look at the γ-orbit of x, we have
an algebraic function C× → X. But X is projective, so this map extends to C → X. Let
x0 = limz→0 γ(z) · x, then x0 ∈ (GrG)T ∩X, which proves Theorem 4.14. �
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