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This note explains basics of p-adic integrals used in an algebra setting. Throughout this note, F is a
non-archimedean local field and O is its ring of integers with residue field k. Let p = char(k) and q = #k.

1. O-varieties

We start with the definition of an O-variety.

Definition 1.1. An O-variety is a finite type O-scheme that is reduced, separated, and flat over O.

Remark 1.2. In equal characteristic case, for any k-variety X0, one can base change to get an O-variety
X = X0 ×Spec k SpecO. In general, one should start with O-varieties.

There is a specialization map � : X(O) → X(k). On the other hand, since X is separated, we have
natural inclusion X(O) ⊂ X(F ). If X is also smooth over O, then X(O) is naturally a compact open
analytic F -submanifold of X(F ).

2. The Weil Measure and Point Counting

Let X be a smooth O-variety of relative dimension n. There is a canonical (real-valued) measure, i.e. the
Weil measure, on X(O), constructed as follows. Let ωX/O be the relative canonical sheaf on X. Choose an
affine open covering {Ui} of X of O-schemes, over which ωX/O is trivialized, and fix a trivialization.

Lemma 2.1. We have X(O) =
⋃
i Ui(O).

Proof. Consider x : SpecO → X, then the special point x1 of x is sent to one of Ui. Then the generic point
x0 of x is in Ui as well, otherwise x0 ∈ X \ Ui, and since X \ Ui is closed, x1 ∈ {x0} ⊂ X \ Ui, which is a
contradiction.

Over each Ui, choose a generator si of ωX/O|Ui , then si is nowhere vanishing on Ui. In local coordinates,
si = fidx1 ∧ · · · ∧ dxn, and the measure on Ui is defined by |fi|Fdx1 · · · dxn, where dx1 · · · dxn denotes the
Haar measure on Fn, normalized so that On has measure 1. Just like in calculus, one can prove an analogue
of change-of-variable formula for integration on Fn, and thus show this measure is independent of the local
coordinates.

Suppose we have another generator s′i of ωX/O|Ui
, then it differs from si by some invertible function

gi : Ui → Gm = SpecZ[T±]. For each x ∈ Ui(O), we get an associated map gi(x)# : Z[T±] → O, and the
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value gi(x) = (gi(x)#)(T ) ∈ O×. Therefore |gi|F = 1 everywhere on Ui(O), and this shows the measure is
independent of the choice of si. For the same reason, the measures on different charts glue on the overlap,
giving us a measure on X(O).

Remark 2.2. As [Yas14] shows, one can replace ωX/O by something slightly more general. See also the
discussion in section 5.

Let Z ⊂ X(k) be any subset, and DX(Z) = �−1(Z) be the preimage of Z under the specialization map.
This is an open subset of X(O). The following results due to Weil are well-known, and the proofs are
straightforward.

Theorem 2.3. One has µ(DX(Z)) = q−n#Z, where µ is the Weil measure on X.

Corollary 2.4. Let f : X(k)→ C be any function. We have∫
X(O)

f(�(x))dµ(x) = q−n
∑

x∈X(k)

f(x).

3. Gauge Measure

In general, ωX/O may not have a global section. What makes Weil measure possible is the fact that an
O-valued invertible function has constant absolute value 1. If we first base change X to F and try to do an
analogous construction, it will usually fail. Of course, if ωXF /F happens to be trivial, one has a well-defined,
nowhere vanishing measure induced by a global generator of ωXF /F . In literature such a generator is called a
gauge form, whose induced measure we may call a gauge measure. One can scale the measure by a invertible
global function, thus unlike Weil measure, there is no obvious choice for a canonical one.

Example 3.1. Let X = P1, and [x, y] the standard coordinate on X, then X(O) ' X(F ) naturally. The
Weil measure for X(O) is induced by O-differential forms dx and dy. If we identify X(O) with F ∪ {∞},
then dx induces the measure on O and dy induces the measure on (O \ {0})−1 ∪ {∞}, and they glue on
the overlap O×. But if we first base change to F and then try to do the similar by regarding dx and dy as
F -differential forms, we have that dx induces measure on F and dy on F× ∪ {∞}, but they do not glue on
the overlap F×.

4. Link Measures

Both gauge measure and Weil measure can be viewed as special cases of the following definition.

Definition 4.1. Let X be a smooth F -variety. A real-valued measure µ on X(F ) is called a Link measure
if one can find a Zariski open cover {Ui} of X, si ∈ ωUi/F (Ui), and µsi-measurable sets Ai ⊂ Ui(F ), such
that

(1) the cover {Ui(F )} of X(F ) is locally finite,
(2) µ|X(F )\(∪iAi) = 0,
(3) si is nowhere vanishing on Ai,
(4) µ|Ai

= µsi |Ai
.

In this case we write µ = L{(Ui, si, Ai)}.

Remark 4.2. If µ = L{(Ui, si, Ai)} and {Vj} is a locally finite (in the open covering sense) Zariski-refinement
of {Ui},then µ = L{(Vj , si|Vj

, Ai ∩ Vj(F ))}.The local finiteness assumption on the cover may be weakened,
but we choose not to do so to avoid unnecessary analysis.

If X is a smooth O-variety, then its Weil measure is a Link measure where Ai = Ui(O) ⊂ Ui(F ) for suitable
Zariski charts {Ui}. A gauge measure will be the case where there is a single chart X and A = X(F ). When
the algebro-geometric background gets complicated, it might be confusing to consider X(O) as O-points
of X, because a point in the sheaf-theoretic sense is not a point in the topological sense. Through Link
measure, one is able to view everything including Weil measure in a more topologial setting, thus less prone
to mistakes.
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5. Non-smooth Case

In the case where X/O is not smooth, one still has numerous choices of Link measures on X(O)∩X♦F (F ),

where X♦F denotes the F -smooth locus of XF . But in general a random Link measure will not be useful in
practice, such as understanding the singularities of X. Since this is not the focal point of this paper, we
don’t expand this further. Readers can refer to say [Yas14] for a particular construction that is useful.

6. Fubini Theorem

For a measures µ on a p-adic manifold, let suppµ be the support of the measure. There is a relative
Fubini theorem for p-adic integrals.

Theorem 6.1. Let π : X → Y be a smooth map of smooth F -varieties, and µX and µY Link measures
on X(F ) and Y (F ) respectively such that π(suppµX) ⊂ suppµY , where supp denotes the support. Let
f : X(F ) → C be an integrable function. Then for each y ∈ Y (F ), there exists a Link measure µXy

on

Xy = π−1(y), such that ∫
X(F )

f(x)dµX(x) =

∫
Y (F )

(∫
Xy(F )

f(x)dµXy
(x)

)
dµY (y).

Moreover, Zariski-locally on X, the differential form that induces µXy
is the restriction of a form in ωX/Y .

Proof. One has the short exact sequence of differential sheaves since π is smooth:

0→ π∗ΩY/F → ΩX/F → ΩX/Y → 0,

which induces the isomorphism of invertible sheaves ωX/F ∼= π∗ωY/F ⊗OX
ωX/Y .

By standard measure theory one can assume f is the characteristic function of a measurable set S ⊂ X(F ).
By Remark 4.2, one may assume µX = 1AµθX and µY = 1BµθY , where A ⊂ X(F ), and θX ∈ ωX/F is a
nonvanishing global form, and similarly B ⊂ Y (F ) and θY ∈ ωY/F is a nonvanishing global form too. By
assumption we have π(A) ⊂ B. Thus by the usual Fubini theorem of measure spaces, for each y ∈ Y (F ) we
have µXy

= 1S∩A∩Xy(F )µθX/θY .

Remark 6.2. The proof also tells us if µX and µY are both gauge measures, then so is µXy
. Similarly, if π is

induced by O-smooth map between smooth O-varieties, and both µX and µY are Weil measures, then µXy

is also the Weil measure if y ∈ Y (O), and zero otherwise.

7. Flexibility in Point Counting and Caveat

As seen in Theorem 2.3, p-adic integral can be used to count k-points of smoothO-varieties. One advantage
of this method is flexibility, as demonstrated by Proposition 7.2. It uses the following standard result [Igu07].

Theorem 7.1. Let X be an irreducible smooth F -variety, Y a subvariety of lower dimension, and µX a Link
measure. Then µX(Y (F )) = 0. In other words, for any compact open subset K ⊂ X(F ), µX(K \ Y (F )) =
µX(K).

Suppose π : X → Y is a generically smooth map of irreducible smooth O-varieties. Let U ⊂ Y be an
open dense O-subscheme over which π is smooth, and V = Y \ U with the reduced scheme structure. Let
y0 ∈ V (k). One may try to count the number of Xy0(k) by exploiting Theorem 7.1.

Proposition 7.2. One has

#Xy0(k) = qdimX

∫
DY (y0)\V (F )

∫
Xy(F )

dµXy
dµY (y), (7.1)

where µX , µY are Weil measures on X and Y respectively, and µXy is some suitable Link measure.

Proof. Denote Z = Xy0(k), Ũ = π−1(U) and Ṽ = π−1(V ). Since X is O-smooth and Z ⊂ X(k), by
Theorem 2.3 and Theorem 7.1, we have

#Xy0(k) = qdimX

∫
DX(Z)

dµX = qdimX

∫
DX(Z)\Ṽ (F )

dµX .
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We have DX(Z) \ Ṽ (F ) ⊂ Ũ(F ), and DY (y0) \ V (F ) ⊂ U(F ). One easily sees that µX restricted to ŨF is

a Link measure (albeit no longer the Weil measure on ŨF ), and so is true for µY restricted to U(F ). Since

ŨF → UF is smooth, by Theorem 6.1 one gets the result.

Proposition 7.2 is generally hard to use because µXy is complicated. A deeper reason behind is that the
Weil measure is very lossy in terms of communication between different Zariski charts, as seen in Example 3.1
already. The following is a simple example of what µXy

may look like.

Example 7.3. Let A = k[x, y]. Let Y = SpecA, and X = Bl(0,0) Y ∼= ProjAA[u, v]/(uy − vx) be the
blow-up of Y at the origin. Denote by π : X → Y the natural map. This is a generically smooth map which
is an isomorphism over U := Y \ {(0, 0)}. Cover X with two affine charts X1 := Spec k[x, y, uv ]/(y uv − x) and

X2 := Spec k[x, y, vu ]/(x vu − y). Let π1 = π|X1
and π2 = π|X2

. Let U1 = π−11 (U) and U2 = π−12 (U).
The Weil measure on Y (O) is induced by the form θY = dx ∧ dy, and that on X(O) is induced by forms

θ1 = d(uv ) ∧ dy on X1 and θ2 = dx ∧ d( vu ) on X2. We have

θ1|U1 =
1

y
π1|∗U1

(θY |U ), and θ2|U2 =
1

x
π2|∗U2

(θY |U ).

The coordinate of a point p ∈ X1(O) can be denoted by triplet (x, y, uv ) where x, y, uv ∈ O, and y uv = x.
If (x, y) 6= (0, 0), then p ∈ U1(F )∩X1(O). Note in this case valF (x) ≥ valF (y). We have a similar statement
for a point in X2(O). We also have that p ∈ X1(O) ∩ X2(O) if u

v ∈ O
×. Combining the information, if

(x, y) ∈ U(F ) ∩ Y (O), we have the relative measure on the fiber (which is a function on a point, i.e. a
number)

µX(x,y)
=

1

max{|x|F , |y|F }
.

Thus we see the relative measure on the fiber is complicated if (x, y) specializes to (0, 0) even though the
map between the underlying manifolds is an (algebraic) isomorphism.

Let V = {(0, 0)}, and y0 = (0, 0) ∈ V (k). Let µF×F be the additive Haar measure on F × F , normalized
so that O ×O has volume 1. Then (7.1) gives that

q−2#Xy0(k) =

∫
(x,y)∈DY (y0)\V (F )

1

max{|x|F , |y|F }
dµY (x, y)

=
∑
i,j≥1

µF×F ($iO× ×$jO×)

q−min{i,j} +
∑
i≥1

µF×F ({0} ×$iO× ∪$iO× × {0})
q−i

=
∑
i≥1

qiµF×F ($iO× ×$iO×) + 2
∑
i≥1

qiµF×F ($iO× ×$i+1O)

=
∑
i≥1

qi · ((q − 1)q−i−1)2 + 2
∑
i≥1

qi · (q − 1)q−i−1 · q−i−1

= q−2(q + 1).

This in turn shows that Xy0 has q + 1 k-points, which we know is true because Xy0
∼= P1.

8. A Special Case

In order to utilize Proposition 7.2, one needs additional input.

Lemma 8.1. Let π : X 99K Y be a rational map between irreducible smooth Calabi-Yau O-varieties. Suppose

there are open dense O-subschemes U ⊂ Y and Ũ ⊂ X such that π is defined and étale on Ũ with image

contained in U , and codimX X\Ũ ≥ 2. Let µX and µY be the Weil measures on X(F ) and Y (F ) respectively.

Let y ∈ Y (O) ∩ U(F ), and µŨy
be the relative measure induced by Theorem 6.1 applied to (ŨF , µX |Ũ(F ))→

(UF , µY |U(F )). Then µŨy
is the counting measure on Ũy(F ) ∩X(O).
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Proof. We may assume both µX and µY are induced by gauge forms θX and θY (defined over O). Thus
(µX)|Ũ(F ) = 1Ũ(F )∩X(O)µ(θX |Ũ ) and (µY )|U(F ) = 1U(F )∩Y (O)µ(θY |U ). Since π|Ũ is étale, we have

θ|Ũ = fπ|∗
Ũ

(θY |U )

for some invertible function f on Ũ . Since codimX X \ Ũ ≥ 2, one can uniquely extend f to an invertible

function on X, still denoted by f . Let x ∈ Ũy(F ) ∩ X(O) then |f(x)|F = 1, which is exactly the value of
µŨy

on x.

Corollary 8.2. Suppose we have the following commutative diagram of smooth irreducible O-varieties:

Ũ U

X Y

A

π

i j

f

g

,

where X and Y are Calabi-Yau (relative to O), i and j are open embeddings, f is proper, and π is étale.

Moreover, suppose codimX X \ Ũ ≥ 2. Let µX and µY be the Weil measures on X(F ) and Y (F ) respec-

tively. Then for any y ∈ U(F ) ∩ Y (O), the relative measure on Ũy(F ) induced by Theorem 6.1 (applied to

π : (ŨF , µX |Ũ(F ))→ (UF , µY |U(F ))) is the counting measure.

Proof. Using lemma 8.1, we only need to prove Ũy(F ) ⊂ X(O), but this is easy: let x ∈ Ũy(F ), then
f(x) = g(y) ∈ A(O). Since f is proper, x ∈ X(O). So we are done.

Remark 8.3. It is crucial that π is a rational map for lemma 8.1 to be useful, because a result by Gabber
[Sta19, Tag 0EA4] shows if π is a morphism, it is in fact étale on all of X.
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