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1. Introduction

One of the goals of the Langlands program is relating Galois representations of local or global fields to
(reasonable) representations of algebraic groups over local fields or adeles. One of the most important cases
is where G = GL(n). The local Langlands correspondence gives a unique bijection{

irreducible admissible
representations of GF

}
/ ∼ ←→

 semisimple n-dimensional
representations

WD(F )→ LG = GL(n,C)

 / ∼, (1.0.1)

where F is a local field, WD(F ) is the Weil-Deligne group of F , and LG is the L-group of G. Conjecturally,
there is an analogous global statement where the left-hand side is automorphic representations, and the
right-hand side is Galois representations. More generally, G can be a reductive group and LG may not be
the general linear group, so in order to make the homomorphisms on the right-hand side representations, one
needs to fix a representation ρ0 of LG. In the case of GL(n), ρ0 can be viewed as chosen to be the standard
representation of GL(n,C). The bijection (1.0.1) should further have the property that the corresponding
pair give the same local or global L-functions (although for most general cases, what the L-function on the
right-hand side should be seems unclear). In the GL(n) case, the right-hand side gives Artin L-functions,
and Langlands correspondence allows us to study them analytically. The L-functions on the left-hand side
will be called principal or standard L-functions. When n = 1, it is the well-known case where the left-hand
side is the theory of Hecke and Tate, while the right-hand side is the class field theory.

This expository paper, which serves as the topic proposal to fulfill a requirement of my PhD program at
the University of Chicago, will discuss the theory of principal L-functions using the method of zeta integrals,
including relavant theory of representations, the analytic continuations and the functional equations. I mainly
follow [GJ72] and [Jac79] with several other supplements. Both local and global cases will be thoroughly
discussed along with a few simple examples (mostly about GL(2)).

2. Local Theory: Nonarchimedean Case

2.1. Definitions and statement of the result. Let F be a nonarchimedean local field with valuation
ring RF , G = Gn = GL(n, F ), and K = GL(n,RF ), a maximal compact subgroup of G.

Definition 2.1.1. Suppose π be a representation of G on a complex vector space V .

(1) Any vector v ∈ V is called smooth if its stablizer is an open subgroup of G.
(2) π is called smooth if all the vectors in V are smooth.
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(3) π is called admissible if its smooth and for any compact open subgroup H < G, the subspace of
H-fixed vectors is finite dimensional.

Given a smooth representation π of G, we define the contragredient representation π̃ to be that on the
subspace of smooth vectors in the algebraic dual space, with the G-invariant pairing denoted by 〈·, ·〉. It is

easy to see if π is admissible or irreducible, then so is π̃ respectively, and ˜̃π ∼= π. A (matrix) coefficient f

is a linear combination of functions on G of the form g 7→ 〈π(g)v, ṽ〉 for some v ∈ V and ṽ ∈ Ṽ . If f is a
coefficient of π, then f̌(g) := f(g−1) is a coefficient of π̃.

Denote M = Mn = Mat(n, F ) the space of n × n matrices, and S (M) the space of Schwartz-Bruhat
functions on M. Fix a nontrivial character ψ of F , the Fourier transform of Φ ∈ S (M) is

Φ̂(x) =

∫
M

Φ(y)ψ(tr(yx))dy,

where dy is the self-dual Haar measure on M. Let H(G) be the Hecke algebra on G, the algebra of C-valued
compactly supported and locally constant functions on G. We also treat G-representations as H(G)-modules.

The main object of our interest is the zeta function Z(Φ, s, f) defined by

Z(Φ, s, f) =

∫
G

Φ(g)|det g|sf(g)d×g, (2.1.1)

where Φ ∈ S (M), s ∈ C, f is a coefficient of π and d×g denotes a fixed Haar measure on G.
We can now state the main result for this section.

Theorem 2.1.2. Suppose π is an irreducible admissible representation of G, then with the notations as
above, we have

(1) There exists a real number s0, such that the integral Z(Φ, s, f) converges absolutely for <(s) > s0

and for all Φ and all coefficients f , where <(s) denotes the real part of s.
(2) Suppose the residue field of F has q elements, then the C-vector space spanned by all Z(Φ, s+ 1

2 (n−
1), f) is a (necessarily principal) fractional ideal in C[q−s, qs], denoted by I(π, s).

(3) There exists an Euler factor L(s, π) = P (q−s)−1 for some polynomial P with P (0) = 1, that I(π, s) =
L(s, π)C[q−s, qs].

(4) There is a rational function γ(s, π, ψ) in q−s such that for all Φ and all coefficients f ,

Z(Φ̂, 1− s+
1

2
(n− 1), f̌) = γ(s, π, ψ)Z(Φ, s+

1

2
(n− 1), f). (2.1.2)

2.2. Some interpretations. Before we give the proof to Theorem 2.1.2, we give an intuitive idea on the
form of the functional equation as well as some useful facts derived from the theorem.

By changing variable s+ 1
2 (n− 1) to s, and for simplicity let γ1(s) = γ(s− 1

2 (n− 1), π, ψ), we can rewrite
(2.1.2) into

Z(Φ̂, n− s, f̌) = γ1(s)Z(Φ, s, f).

We can embed G into M since F is a field. Assume for now Φ and Φ̂ have support contained in G, and all
integrals converge absolutely, then Z(Φ̂, n− s, f̌) can be interpreted as the following convolution on G

Z(Φ̂, n− s, f̌) = [J ∗ Φ ∗ f̌s](e),

where J(g) = ψ(tr(g−1))|det g|−n, f̌s(g) = |det g|−sf̌(g) and e is the identity of G. Note f̌s is a coefficient of
det−s⊗π̃. Since J is a class function on G, we have J ∗Φ = Φ ∗ J and J ∗ f̌s = constant · f̌s by Schur lemma
(see [Car79] or [Bum97]). Hence we get the equation

[J ∗ Φ ∗ f̌s](e) = constant · [Φ ∗ f̌s](e) = constant · Z(Φ, s, f). (2.2.1)

So we see the rank n in functional equation comes from the scaling factor in d×g = |det g|−ndg. To extend
this to the whole S (M), one uses a version of Plancharel’s formula.

An alternative way to describe the functional equation is through bilinear forms and finite rank linear
operators.
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Definition 2.2.1. An element ξ ∈ H(G) is called an elementary idempotent if it is of the form

ξ(g) =

{ ∑m
i=1 tr(ρi(g

−1)) g ∈ K
0 g 6∈ K

,

where ρ1, . . . , ρm are inequivalent irreducible representations of K.

Lemma 2.2.2. For any function Φ on M that is K-finite on the right (resp. on the left), there is an
elementary idempotent ξ ∈ H(G) such that Φ ∗ ξ = Φ (resp. ξ ∗ Φ = Φ). In particular, for any Φ ∈ S (M),
there is an elementary idempotent ξ ∈ H(G) so that

ξ ∗ Φ = Φ ∗ ξ = Φ.

Proof. The first assertion is just elementary representation theory for compact groups. The second one
follows from that Φ is K-finite. �

Given Φ ∈ S (M) and s ∈ C with <(s) � 0, we have a bilinear form B on V × Ṽ sending (v, ṽ)
to Z(Φ, s, f) where f(g) = 〈π(g)v, ṽ〉. By Lemma 2.2.2, there is an elementary idempotent ξ so that
B(π(ξ)v, π̃(ξ̌)ṽ) = B(v, ṽ) for all v and ṽ. Then since π(ξ) and π̃(ξ̌) have finite rank, one can represent B
by a linear operator on V , which enables the following definition.

Definition 2.2.3. Given Φ ∈ S (M) and s ∈ C with <(s)� 0, the operator Z(Φ, s, π) on V is defined by

〈Z(Φ, s, π)v, ṽ〉 = Z(Φ, s, f)

for all v ∈ V and ṽ ∈ Ṽ , where f(g) = 〈π(g)v, ṽ〉. We also define Z(Φ, s, π̌) by

〈Z(Φ, s, π̌)v, ṽ〉 = 〈v, Z(Φ, s, π̃)ṽ〉.

The functional equation is then simply a statement that up to a constant, Z(Φ̂, 1− s+ 1
2 (n− 1), π̃) is the

adjoint operator of Z(Φ, s+ 1
2 (n− 1), π).

We list here some important facts [Jac79].

(1) Suppose π is not irreducible but central, i.e. there exists a quasicharacter ω : F× → C× that
π(a) = ω(a)1V for a ∈ F×, then the statement of Theorem 2.1.2 makes sense for π (although may
fail to be true).

(2) If Theorem 2.1.2 is true for an admissible central representation π, then it is true for its irreducible
components.

(3) The ε-factor is defined as

ε(s, π, ψ) = γ(s, π, ψ)
L(s, π)

L(1− s, π̃)
. (2.2.2)

It is necessarily a monomial in q−s.

2.3. Reduction to supercuspidal representations. The proof of Theorem 2.1.2 can be divided into two
steps.

(1) Reduce the problem to the case where the representation π is supercuspidal (Definition 2.3.6).
(2) Prove the theorem for supercuspidals, which enjoy the property that coefficients of π are compactly

supported modulo the center of G. One then reduces the problem to the already-proved n = 1 case
[Tat67].

This subsection is dedicated to the first step. Let P be the standard parabolic subgroup of type (n1, . . . , nr)
of G, whose elements are those in the form

p =

g1 uij
. . .

0 gr

 , gi ∈ GL(ni). (2.3.1)

Let N = N(P ) be the unipotent radical of P , whose elements are those with gi = eni . We then have
P/N ∼=

∏
iGni . Suppose σi is an admissible representation of Gni , then σ = �iσi can be viewed as an

admissible representation of P trivial on N .
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Definition 2.3.1. Suppose (σ,W ) is a representation of P trivial on N . The induced representation (π, V ) =

IndGPσ of G is defined on the space of functions f : G→W satisfying conditions

(1) For g ∈ G, p ∈ P ,

f(pg) = δP (p)
1
2σ(p)f(g),

where δP is the modular quasicharacter with respect to a fixed left Haar measure on P .
(2) There is an open subgroup G′ < G such that for all g ∈ G, h ∈ G′,

f(gh) = f(g).

The action π is the right translation (π(g)f)(g′) = f(g′g).

Proposition 2.3.2. If (σ,W ) is admissible, so is IndGPσ and IndGP σ̃. Moreover, we have (IndGPσ)∼ ∼= IndGP σ̃.

Proof. For the first assertion see Theorem 2.9(i) of [GJ72]. It is completely elementary once one notices
for any compact open subgroup G′ < G, the double cosets P\G/G′ is a finite set. We prove the second
assertion. Suppose h is a continuous function on G such that h(pg) = δP (p)h(g), the Iwasawa decomposition
G = PK shows h is completely determined on K. The linear form h 7→

∫
K
h(k)dk is invariant under right

translation by G (Lemma 2.6.1 of [Bum97]). Denote this form by
∫
P\G dg, and let V , Ṽ be the respective

spaces of IndGPσ and IndGP σ̃. One then has a nondegenerate G-invariant pairing on V × Ṽ by

〈f, f̃〉 =

∫
P\G
〈f(g), f̃(g)〉W×W̃dg,

hence the identification (IndGPσ)∼ ∼= IndGP σ̃. �

Proposition 2.3.2 allows us to talk about Theorem 2.1.2 for induced representations.

Proposition 2.3.3. With the notations in Definition 2.3.1, suppose each σi admits a central quasicharacter,
and Theorem 2.1.2 is true for each σi, then it is true for π = IndGPσ. Moreover, we have

I(π, s) =
∏
i

I(σi, s),

γ(s, π, ψ) =
∏
i

γ(s, σi, ψ).

Proof (sketch). Section 2.2 of [Jac79] gives a clean account for this proposition. The proof is basically
manipulate the integrals so that Z(Φ, s + 1

2 (n − 1), f) can be written as a finite linear combination of

products
∏
i Z(Φi, s + 1

2 (ni − 1), fi). Running the argument backwards shows any product
∏
i Z(Φi, s +

1
2 (ni − 1), fi) equals Z(Φ, s+ 1

2 (n− 1), f) for some Φ and f . A careful comparison of the linear coefficients

of Z(Φ, s + 1
2 (n − 1), f) when written as combination of products with those of Z(Φ̂, 1 − s + 1

2 (n − 1), f̌)
concludes the proof. �

We need some observations (Section 2.2 of [Jac79]) to make a relatively clean proof. Let V be the

vector space of π, and W the space of σ, then for v ∈ V, ṽ ∈ Ṽ , the function H : G × G → C defined by
H(g, g′) = 〈v(g), ṽ(g′)〉W×W̃ satisfies:

(1) H(pg, p′g′) = δP (p)H(g, g′) for g, g′ ∈ G and p/N = p′/N ∈ P/N .

(2) For any g, g′ ∈ G, the function p 7→ H(pg, g′) is a coefficient of δ
1
2

P ⊗ σ.
(3) H is K ×K-finite on the right.

Then the coefficient f is by definition

f(g) = 〈π(g)v, ṽ〉 =

∫
K

H(kg, k)dk. (2.3.2)

Conversely, for any function H satisfying the three conditions above, the function f defined by (2.3.2) is
necessarily a coefficient of π. The coefficient f̌ is similarly defined by

f̌(g) =

∫
K

H̃(kg, k)dk,

where H̃(g, g′) = H(g′, g).
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Proof of Proposition 2.3.3. Write (2.1.1) (with complex parameter s+ 1
2 (n− 1)) into

Z(Φ, s+
1

2
(n− 1), f) =

∫
G

Φ(g)|det g|s+ 1
2 (n−1)

(∫
K

H(kg, k)dk

)
d×g

=

∫∫
K×K

dkdk′
∫
P

Φ(k−1pk′)|det p|s+ 1
2 (n−1)H(pk′, k)dlp. (2.3.3)

Break the integral over P into integrals over N and P/N =
∏
iGni , and write

ΨΦ(gi; k, k
′) = ΨΦ(g1, . . . , gr; k, k

′) =

∫
N

Φ(k−1pk′)du =

∫
N

Φ(k−1pk′)
∏
i,j

duij ,

hσ(gi; k, k
′) = hσ(g1, . . . , gr; k, k

′) = H(pk′, k)δ
− 1

2

P (p),

where uij are those in (2.3.1) and note
∏
i,j duij is the Haar measure on N . Then (2.3.3) becomes∫∫

K×K
dkdk′

∫
P/N

ΨΦ(gi; k, k
′)hσ(gi; k, k

′)
∏
i

|det gi|s+
1
2 (ni−1)

∏
i

d×gi. (2.3.4)

We have then, by K-finiteness of Φ

Φ(k−1pk′) =
∑
α,β

cα(k)dβ(k′)Φαβ(p),

where α, β runs over some finite index set, and cα and dβ are families of functions (depending on Φ), and
Φαβ is a basis for the vector space spanned by K-translations of Φ. Thus we have

ΨΦ(gi; k, k
′) =

∑
α,β

cα(k)dβ(k′)ΨΦαβ (gi; e, e). (2.3.5)

Similar result holds for hσ as well. So after integrating over K × K, one sees Z(Φ, s + 1
2 (n − 1), f) is a

finite linear combination of products
∏
i Z(Φi, s + 1

2 (ni − 1), fi), for some Φi ∈ S (Mni) and fi coefficient
of σi. Hence we proved the convergence for <(s) � 0 by induction hypothesis, as well as the inclusion
I(π, s) ⊂

∏
i I(σi).

Conversely, given zeta integrals Z(Φi, s + 1
2 (ni − 1), fi), first note it is easy to find Φ ∈ S (Mn) that∫

N
Φ(p)du =

∏
i Φi(gi). Then by Lemma 2.2.2, we can find K-finite functions ξ1 and ξ2 that∫∫

K×K
Φ(k−1gk′)ξ1(k)ξ2(k′)dkdk′ = Φ(g).

One then just (mostly) reverse the calculation above to get

Z(Φ, s+
1

2
(n− 1), f) =

∏
i

Z(Φi, s+
1

2
(ni − 1), fi)

for some coefficient f , so that I(π, s) =
∏
i I(σi).

So far we proved the first three assertions in Theorem 2.1.2 for π. Now we prove the functional equation.
Lemma 3.4.0 of [GJ72] shows

ΨΦ̂(gi; k, k
′) = Ψ̂Φ(gi; k

′, k),

where Ψ̂ denotes the Fourier transform of Ψ on
∏
iMni . One also easily shows

hσ̃(gi; k, k
′) = hσ(g−1

i ; k′, k),

so we have

Z(Φ̂, s+
1

2
(n− 1), f̌) =

∫∫
K×K

dkdk′
∫
P/N

Ψ̂Φ(gi; k
′, k)hσ(g−1

i ; k′, k)
∏
i

|det gi|s+
1
2 (ni−1)

∏
i

d×gi. (2.3.6)

We have a similar result as in (2.3.5) for the contragredient side. So we have, after integrating those linear
coefficients (cα and dβ) over K ×K, (2.3.4) has exactly same linear coefficients as does (2.3.6) when written

into linear combination of products
∏
i Z(Φi, s + 1

2 (ni − 1), fi) and
∏
i Z(Φ̂i, s + 1

2 (ni − 1), f̌i) respectively.
So the induction hypothesis gives the functional equation for π, and also the product formula for the γ-
factors. �
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In order to reduce Theorem 2.1.2 to supercuspidals (Definition 2.3.6), it suffices to show that any ir-
reducible admissible representation can be realized as a component of the induced representation of some
supercuspidal representation.

If we have parabolic subgroups P and P ′ of G such that P ′ < P , then N ′ = N(P ′) > N = N(P ). Let σ′

be an admissible representation of P ′/N ′, and σ = Ind
P/N
P ′/Nσ

′, it is easily shown the natural identification

(equation (2.10) of [GJ72])

IndGP ′σ
′ ∼= IndGPσ. (2.3.7)

Now let (π, V ) be an irreducible admissible representation of G, P any proper parabolic subgroup of G
and N its unipotent radical, denote by V (N) the subspace spanned by vectors of the form v − π(u)v for all
u ∈ N . We have immediately that V (N) is actually a P -invariant subspace since P normalizes N .

Definition 2.3.4. Let V (N) be as above, and VN = V/V (N), the Jacquet module is the quotient represen-
tation (πN , VN ) of P .

Proposition 2.3.5. Let π, πN be as above. If π is admissible, so is πN viewed as a representation of P/N .

Proof. See [Car79] or [Cas16b]. �

Definition 2.3.6. Suppose n > 1. An irreducible admissible representation (π, V ) of G is called supercusp-
idal if for all proper parabolic subgroup P < G, the Jacquet module VN(P ) = 0. An irreducible admissible
representation �iσi of

∏
iGni is called supercuspidal if each σi is.

Proposition 2.3.7 (Frobenius reciprocity). Let π be any admissible representation of G and σ one of P
trivial on N , then we have isomorphism by evaluating on the identity e ∈ G

HomG(π, IndGPσ) ∼= HomP (δ
− 1

2

P ⊗ πN , σ)

ϕ 7→ (w 7→ ϕ(w)(e)).

Proof. It is just standard argument and we omit here. See Proposition 2.12 of [GJ72]. �

Corollary 2.3.8. If π is irreducible and not supercuspidal, then π can be realized as a subrepresentation of
IndGPσ, where P a proper parabolic subgroup of G, σ some irreducible admissible representation of P trivial
on N(P ).

Proof. Let P be a parabolic subgroup that VN 6= 0 where N = N(P ). Combining Frobenius reciprocity

and the admissibility of π, we can show σ = δ
− 1

2

P ⊗ π̄N , the twisted quotient of πN by its largest proper
submodule. Proposition 2.3.5 ensures that σ is admissible. �

Theorem 2.3.9. Any irreducible admissible representation π of G can be realized as a subrepresentation of a
representation of the form IndGPσ, where P is a parabolic subgroup of G and σ a supercuspidal representation
of P/N(P ).

Proof. Combining (2.3.7) and Corollary 2.3.8, one proves it by induction on n. �

2.4. Supercuspidal representations. We now present the proof of Theorem 2.1.2 in supercuspidal case.
Throughout this subsection, (π, V ) is a supercuspidal representation of G, and by definition π is irreducible.

Proposition 2.4.1. Let (π, V ) be a supercuspidal representation of G. We have

(1) The coefficients of π are compactly supported modulo Z(G), the center of G.
(2) If the central quasicharacter ω of π is actually a character, then π is preunitary, i.e. there exists a

G-invariant Hermitian inner product on V .
(3) The contragredient π̃ is also supercuspidal.

Proof. Let coefficient f(g) = 〈π(g)v, ṽ〉. We have the Cartan decomposition G = KA−K, where A− is the
subset of diagonal matrices a = diag(a1, . . . , an) that |ai| ≤ |ai+1| for all 1 ≤ i ≤ n− 1. Since f is K-finite
on both sides, it suffices to prove f is compactly supported on A−/F×, i.e. there is c > 0 such that for
any a ∈ A−, |ai/ai+1| < c for some i implies f(a) = 0. Since there are finitely many i, it suffices to show
the existence of c for a fixed i. Now let P be the parabolic subgroup of type (i, n − i), N = N(P ), then
π is supercuspidal implies we can find compact open subgroup U1 < N such that the average of v over U1
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vanishes. Let U2 < N be a compact open subgroup that fixes ṽ. Then the nondiagonal matrix entries of U1

are bounded above by some c1, and those of U2 are bounded below by some c2 > 0, if we let c = c2/c1, then
a simple calculation shows if a ∈ A− and |ai/ai+1| < c, then aU1a

−1 ⊂ U2, hence

f(a) =

∫
U1

〈π(a)v, ṽ〉du =

∫
U1

〈π(a)v, π̃(aua−1)ṽ〉du =

∫
U1

〈π(a)π(u−1)v, ṽ〉du = 0,

the final equality due to that averaging over U1 kills v. So the first assertion is proved. If ω is a character,
the inner product on V can be defined as

(v1, v2) =

∫
G/Z

〈π(g)v1, ṽ〉〈π(g)v2, ṽ〉d×g,

where ṽ is a fixed nonzero element of Ṽ . It is well defined by the first assertion, and positive definite by
the irreducibility of π̃. Firnally, since twisting by a quasicharacter of G does not affect supercuspidality,
we may assume π is preunitary, hence π̃ may be identified with the complex conjugate of π, which is
supercuspidal. �

Definition 2.4.2. We define a subspace S0(M) of S (M) as the functions Φ ∈ S (M) satisfying

(1) Φ vanishes on singular matirces, i.e. it is supported in G.
(2) For N = N(P ) where P any parabolic subgroup of G, and g1, g2 ∈ G, we have∫

N

Φ(g1ug2)du = 0.

Lemma 2.4.3. S0(M) is stable under Fourier transform.

Proof. Calculation. See [GJ72], Lemma 5.3. �

Proposition 2.4.4. Let Z(Φ, s, π) be the operator associated to the zeta function, then

(1) Z(Φ, s, π) can be identified with an element in V ⊗ Ṽ .

(2) Given any element T ∈ V ⊗ Ṽ , and s ∈ C, there is a Φ ∈ S0(M) such that Z(Φ, s, π) = T .
(3) Given any nonzero v ∈ V , the set of u ∈ V that there is Φ ∈ S0(M), c 6= 0 and n ∈ Z so that

Z(Φ, s, π) = cq−nsu for all s ∈ C

spans V .

Proof (ideas). The first assertion is obvious. For the third assertion one notices that if u belongs to the
prescribed set, then so does π(g)u for any g ∈ G, so by irreducibility, it suffices to prove this set is nonempty.
For the second assertion, one reduces to Schur orthogonality. For details see [GJ72], Proposition 5.5. �

Remark 2.4.5. The vanishing condition of functions in S0(M) is seemingly very restrictive, but Proposi-
tion 2.4.4 shows S0(M) is still a large enough space of functions to work with.

Proposition 2.4.6 (Plancharel’s formula). Suppose Φ ∈ S (M) and Ψ ∈ S0(M), then for 0 < <(s) < n the
integrals ∫∫

G×G
Φ(g)Ψ̂(h)〈π(g)v, π̃(h)ṽ〉|det g|s|deth|n−sd×gd×h

and ∫∫
G×G

Φ̂(g)Ψ(h)〈π(g−1)v, π̃(h−1)ṽ〉|det g|n−s|deth|sd×gd×h

are absolutely convergent and are equal.

Proof. Calculation. That Ψ ∈ S0(M) enables direct proof of convergence. See [GJ72], Proposition 5.6. �

Proposition 2.4.7. There is a unique scalar γ(s) such that for all Φ ∈ S0(M)

Z(Φ̂, n− s, π̌) = γ(s)Z(Φ, s, π).

Proof. This is just our discussion for (2.2.1) plus some argument about convergence. See [GJ72], Proposi-
tion 5.8. �
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Now we are ready to prove Theorem 2.1.2.

Proof of Theorem 2.1.2 for supercuspidals. Retain all the relevant notations above. By Proposition 2.4.1,
there is a compact open subgroup G′ < G such that Φ and f are invariant under G′, and the support of f
is contained in a finite union

⋃
iG
′Zgi. Thus up to a constant,

Z(Φ, s, f) =
∑
i

f(gi)|det gi|s
∫
F×

Φ(agi)|a|nsω(a)d×a.

This is a finite sum of convergent integrals for <(s) > 0 [Tat67]. Hence we proved the convergence assertion.
Moreover, one has an Euler factor L(ns, ω) for the integral over F×, and Z(Φ, s, f)L(ns, ω)−1 is a polynomial
in q−s and qs. Replacing Φ and f by a translation by any element in G, one easily sees the zeta functions
form a nonzero fractional ideal of C[q−s, qs]. So we proved the second assertion. By Proposition 2.4.4, for

arbitrary nonzero ṽ ∈ Ṽ , we may choose Ψ ∈ S0(M) so that Z(Ψ̂, n− s, π̃)ṽ = qsũ for some nonzero ũ ∈ Ṽ .
Hence we have Z(Ψ, s, ˇ̃π) = γ(s)−1qsũ. Let v ∈ V be arbitrary, then Proposition 2.4.6 gives

qsZ(Φ, s, f) = γ(s)−1qsZ(Φ̂, n− s, f̌),

where f(g) = 〈π(g)v, ũ〉. Since v is arbitrary, and all those ũ for varying Ψ span Ṽ , we are done. �

For supercuspidals, we have an even more precise result (Proposition 5.11 of [GJ72]).

Proposition 2.4.8. Suppose π is supercuspidal and n > 1, then L(s, π) = L(s, π̃) = 1.

2.5. Examples. For more detailed and comprehensive results one can refer to [GJ72] or [Jac79]. Here we
give the results for spherical functions, which are indispensable for global theory; we also give results for
GL(2) in the principal series case.

If π is an irreducible admissible representation of G, then the subspace V0 of K-invariant vectors is at
most one dimensional.

Definition 2.5.1. With the notations above, an irreducible admissible representation of G is called spherical
if V0 is nontrivial.

In general, for any admissible π, assume V0 is one dimensional, then for the contragredient representation,
Ṽ0 is one dimensional as well. Choose v0 ∈ V0, ṽ0 ∈ Ṽ0, so that 〈v0, ṽ0〉 = 1, then we define the spherical
function f0 attached to π by

f0(g) = 〈π(g)v0, ṽ0〉.
Now let P be the subgroup of upper triangular matrice, then P/N ∼= (F×)n. Let σi be n unramified
quasicharacters of F×, and σ = �iσi be a one dimensional representation of P trivial on N , and let π be the
induced representation IndGPσ. Then it turns out V0 is one dimensional for this π, and the spherical function
attached to π is

f0(g) = 〈π(g)ϕ0, ϕ̃0〉 =

∫
K

ϕ0(kg)ϕ̃0(k)dk =

∫
K

ϕ0(kg)dk,

where ϕ0(pk) = δP (p)
1
2σ(p) and ϕ̃0(pk) = δP (p)

1
2σ−1(p). Let π0 be the only irreducible component of π

that contains the K-invariant subspace, then f0 is also a spherical function attached to π0, and moreover we
have the following.

Proposition 2.5.2. With the notations above,

(1) L(s, π0) =
∏
i L(s, σi).

(2) ε(s, π0, ψ) =
∏
i ε(s, σi, ψ), and equals 1 if the exponent of ψ is zero and K has measure one.

Proof. See [GJ72], Lemma 6.10 and Proposition 6.12. �

When n = 2, the only nontrivial standard parabolic subgroup of G is the Borel group B. An irreducible
representation of B/N(B) is the same as a quasicharacter χ = χ1 � χ2 where χ1 and χ2 are two quasichar-

acters of F×. The induced representation IndGBχ is often denoted by B(χ1, χ2). The following result is well
known [Bum97].

Theorem 2.5.3. For any χ1 and χ2,
8



(1) If χ1χ
−1
2 6= |·|±1, then π = B(χ1, χ2) is irreducible and L(s, π) = L(s, χ1)L(s, χ2). Moreover,

B(χ1, χ2) ∼= B(χ2, χ1).
(2) If χ1χ

−1
2 = |·|, then B(χ1, χ2) contains a unique irreducible proper invariant subspace Bs and its

quotient Bf by this space is one dimensional.

(3) If χ1χ
−1
2 = |·|−1, then B(χ1, χ2) contains a unique one dimensional invariant subspace spanned by

|det(·)| that is isomorphic to Bf , and its quotient by this subspace is isomorphic to Bs.

3. Local Theory: Archimedean Case

3.1. (g,K)-modules and the Hecke algebra H(G,K). Let F now be an archimedean local field, so
F = R or F = C. Let G again be GL(n, F ), and K = O(n) if F = R and K = U(n) if F = C. Denote by g
and k the real Lie algebras of G and K respectively, also let U(g) be the enveloping algebra of g.

In archimedean case, finding suitable definitions is actually the hardest part. Instead of dealing with
representations of G, one has to move to so-called (g,K)-modules, or Harish-Chandra modules. A thorough
account of basic properties of (g,K)-modules is too long for this article, so we only give the definition and
cite relevant results when needed. An overall convenient reference is a short note by Casselman [Cas16a].

Definition 3.1.1. Let (π, V ) be a continuous representation of G on a reasonable (e.g. complete locally
convex) topological vector space V .

(1) π is irreducible if it contains no closed nontrivial subrepresentation of G.
(2) A K-finite vector v is such that π(K)v span a finite dimensional vector space. Denote by V0 the

subspace of K-finite vectors.
(3) A C1 vector v is such that the limit

π(X)v = lim
t→0

π(exp(tX))v − v
t

exists for all X ∈ g. Inductively, a Ck vector v is a C1 vector with π(X)v being Ck−1 for all X ∈ g,
and a smooth vector is one that is Ck for all k > 0. Denote V∞ the subspace of smooth vectors.

(4) Denote Vπ = V0 ∩ V∞.

V∞ is G-invariant while V0 is not; however, they are both g-invariant, and the action of g is compatible
with the restricted action of K in certain ways. This leads to the definition of (g,K)-modules, which has
the advantage of being purely algebraic.

Definition 3.1.2. A (g,K)-module is a complex vector space V that simultaneously admits a g-action and
a K-action, both denoted by π, satisfying

(1) V consists solely of K-finite vectors, and the action of K is continuous (equivalently, V is a union of
continuous finite dimensional K-representations).

(2) The differential of K-action is the same as the k-action inherited from that of g.
(3) For any k ∈ K, X ∈ g and v ∈ V

π(k)π(X)π(k−1)v = π(Ad(k)X)v.

For any representation (π, V ) of G, we have an associated (g,K)-module Vπ, which is a dense subspace
of V .

Definition 3.1.3. A (g,K)-module is called admissible if every irreducible representation of K appears with
finite multiplicity. A representation of G is called admissible if its associated V0 has this property.

We can also talk about admissibility of the contragredient representation, as well as of the dual (g,K)-
modules, and we have that they are admissible if and only if the original ones are, since the admissibility is
determined by the decomposition as K-representations. A partial converse of the associated (g,K)-module
to a G-representation is the following result (Corollary 4.19 of [Wal79]), which is a corollary of the important
Theorem 3.2.4.

Theorem 3.1.4. Let W be an irreducible admissible (g,K)-module, then there exists an irreducible admis-
sible representation (π, V ) of G with Vπ isomorphic to W as (g,K)-modules.
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With Theorem 3.1.4, one can talk about matrix coefficients of an irreducible and admissible (g,K)-module,
but with the concern that it may depend on the choice of the G-representation, which in general is not unique.
This concern is eliminated by the following proposition [Bor72].

Proposition 3.1.5. Let (π, V ) be an admissible representation of G. If v ∈ V0 a K-finite vector, and ṽ any
continuous linear functional on V , then the matrix coefficient g 7→ 〈π(g)v, ṽ〉 is analytic.

Proposition 3.1.5 implies that any matrix coefficient of a (g,K)-module depends only on its Taylor ex-
pansion, i.e. the action of U(g), hence independent of the choice of the G-representation it is associated to.
By an abuse of language, we call such function a matrix coefficient of G.

Remark 3.1.6. One can actually make the map from the category of (g,K)-modules to the category of G-
representations functorial. However, there are again several inequivalent ways to do this. For a “canonical”
construction, see [Cas89a].

An equivalent way to formulate matrix coefficients is through the Hecke algebra. This is the one adopted
by [GJ72] and [JL70], although most of the more recent literature seems in favor of (g,K)-module.

Definition 3.1.7. Let H1(G,K) be the subalgebra of K-finite functions (on both sides) in C∞c (G), and
H2(G,K) be the algebra generated by matrix coefficients of irreducible representations of K, viewed as
distributions on G supported in K. Define the Hecke algebra H(G,K) by

H(G,K) = H1(G,K) + H2(G,K).

We also simply use H, H1, or H2 if no confusion arises.

Definition 3.1.8. An admissible representation of H(G,K) is a complex representation (π, V ) satisfying

(1) For any v ∈ V , it can be written as a finite sum

v =
∑
i

π(fi)vi,

for some vi ∈ V and fi ∈ H1(G,K).
(2) For any elementary idempotent ξ, π(ξ)V is finite dimensional.
(3) For any elementary idempotent ξ and any v ∈ π(ξ)V , the map f 7→ π(f)v, where f ∈ ξ ∗H1 ∗ ξ, is

continuous.

Remark 3.1.9. The topology of ξ ∗H1 ∗ ξ is chosen as the subspace topology of the Schwartz space S (G),
which is a Fréchet space; for details on S (G) see [Cas89b]. The point is here we have a reasonable topological
vector space to work with.

A definition of matrix coefficients “of G” in terms of admissible representation of H(G,K) can be found
in [GJ72]; we do not elaborate here.

Clearly a representation of G will induce both a (g,K)-module and a representation of H(G,K). Moreover,
the subspace Vπ of the (g,K)-module is invariant under H(G,K), and by a simple calculation we have for
any v ∈ V∞, f ∈ C∞c (G) and X ∈ g,

π(X)π(f)v = π(LXf)v, (3.1.1)

where LX denotes the left associated action of X. Conversely, given an admissible representation of H(G,K),
one can find for any vector v an f ∈ H that fixes v, hence one can define an action of g using (3.1.1), and
an action of K using Dirac sequences. One in this way obtains a (g,K)-module hence a G-representation.
There are of course many analytic details necessary for this correspondence, but we do not attempt it here.

3.2. The result and proof. As in nonarchimedean case, we denote S (M) the space of Schwartz functions
on the matrix algebra M = Mat(n,R) or Mat(n,C). We also denote S0(M) the subspace of functions Φ of
the form

Φ(x) = P (x) exp(−π
∑

x2
ij) if F = R,

Φ(z) = P (z, z̄) exp(−π
∑

zij z̄ij) if F = C.
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Note elements in S0(M) are K-finite. Correspondingly, if we choose the additive character of F to be

ψ(x) = exp(−2πix) if F = R,
ψ(z) = exp(−2πi(z + z̄)) if F = C,

then S0(M) is invariant under Fourier Transform. We fix such choices.
The main result of this section is the following.

Theorem 3.2.1. Suppose π is an irreducible admissible (g,K)-module.

(1) There exists a real number s0, such that the integral Z(Φ, s, f) in (2.1.1) converges absolutely for
<(s) > s0 and for all Φ ∈ S (M) and all coefficient f of π.

(2) The space I(π, s) of all Z(Φ, s + 1
2 (n − 1), f), where Φ ∈ S0(M) and f any coefficient, is a C[s]-

submodule of the space of all meromorphic functions on C.
(3) There is an Euler factor L(s, π) which is a fixed nonzero meromorphic function in s such that

I(π, s) = L(s, π)C[s]. In addition, Z(Φ, s, f)/L(s, π) has an entire continuation for all Φ ∈ S (M).
(4) There is a meromorphic function γ(s, π, ψ) so that for all Φ ∈ S (M)

Z(Φ̂, 1− s+
1

2
(n− 1), f̌) = γ(s, π, ψ)Z(Φ, s+

1

2
(n− 1), f).

If we define the ε-factor as in (2.2.2), it is a constant with our choice of ψ above.

The proof of Theorem 3.2.1 is similar to that of Theorem 2.1.2 using parabolic induction. One first has
the following definition and results.

Definition 3.2.2. Let B be the standard minimal parabolic (i.e. Borel) subgroup of G of type (1, . . . , 1),
and (σ,W ) a finite dimensional smooth representation of B trivial on N(B). The induced representation

IndGBσ of G is defined to be

(1) The vector space V of measurable functions G→W square integrable over K.
(2) For any f ∈ V , b ∈ B and g ∈ G we have

f(bg) = δB(b)
1
2σ(b)f(g).

(3) The action of G is by right translation.

Proposition 3.2.3. The induced representation IndGBσ is admissible.

Proof. It is [Wal79], Theorem 4.9. �

Theorem 3.2.4 (Casselman’s submodule theorem). Suppose (π, V ) be an irreducible (g,K)-module, then it

is isomorphic to a submodule of the associated (g,K)-module of IndGBσ for some irreducible representation
σ of B/N(B).

Proof. See [Wal79], Theorem 4.18. �

The remaining of the proof is then similar to the nonarchimedean case: first for Φ ∈ S0(M), one proves a
similar statement of Proposition 2.3.3 when P = B, and then combine it with Theorem 3.2.4 and the rank 1
case we already know [Tat67] one proves all claims for Φ ∈ S0(M). Next, using that S0(M) is dense in S (M)
and that Fourier transform is continuous on the Schwartz space, one can prove the entire continuation of
Z(Φ, s, f)/L(s, π) as in [Jac79], Proposition 4.5 and it is a uniform limit of Z(Φi, s, f)/L(s, π) for a sequence
of Φi ∈ S0(M) on any vertical strips s0 < s1 < <(s) < s2. The latter sequence is also uniformly Cauchy
on arbitrary vertical strips. Taking limit on both sides of the functional equation one completely proves
Theorem 3.2.1.

4. Global Theory

4.1. The main theorem. Let F now be a global field, v any place of F , A = AF the ring of Adeles,
and J = A×F the multiplicative group of Ideles. It is also useful to denote Afin the finite adeles (ignoring
the infinite part), and A∞ the product of Fv when v is infinite. Let GA = GL(n,A) and K =

∏
vKv the

standard maximal compact subgroup, where Kv is the one of Gv. We use Gfin for GL(n,Afin) and similarly
G∞, as well as the subscripts fin or ∞ for other relavent subgroups and Lie algebras. Note GA can be
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identified with the restricted direct product of Gv with respect to Kv. We denote MA = Mat(n,A) the
space of n×n matrices, and S (MA) the space of Schwartz-Bruhat functions on MA, the elements of which
are linear combinations of functions of the form Φ(x) =

∏
v Φv(xv), where Φv ∈ S (Mv) and for almost all v

equals the characteristic function of Mat(n,Rv) (see Remark 4.2.3). S (MA) is clearly stable under Fourier
transform

Φ̂(x) =

∫
MA

Φ(y)ψ(tr(yx))dy,

where ψ is a nontrivial additive character of A trivial on F . If F is a number field, we also denote by
S0(MA) the subspace of elements with archimedean component inside S0(M∞).

We present the main theorem first and introduce the remaining undefined notions gradually in our sketch
of proof.

Theorem 4.1.1. Suppose π = ⊗vπv is an irreducible automorphic representation of GA with a central
quasicharacter trivial on F×, π̃ its contragredient, Φ ∈ S (MA), s ∈ C and f a coefficient of π.

(1) The zeta integral (2.1.1) converges absolutely on some right half-plane <(s) > s0, and can be analyt-
ically continued to the whole C. Moreover, it satisfies the functional equation

Z(Φ, s+
1

2
(n− 1), f) = Z(Φ̂, 1− s+

1

2
(n− 1), f̌), (4.1.1)

where Φ̂ denotes the Fourier transform with respect to ψ, and f̌(g) = f(g−1).
(2) The global L-functions defined by Euler products

L(s, π) =
∏
v

L(s, πv), L(s, π̃) =
∏
v

L(s, π̃v)

as well as the global ε-factor

ε(s, π) =
∏
v

ε(s, πv, ψv)

converge absolutely on some right half-plane, and have analytic continuations to the whole C. More-
over, there is a functional equation

L(s, π) = ε(s, π)L(1− s, π̃).

4.2. Admissible representations and the global Hecke algebra. We start by defining the notion of
admissible representation for GA, and if F is a number field it is not an actual GA representation because
of the archimedean places.

Definition 4.2.1. An admissible representation (π, V ) of GA is a complex vector space V which is simulta-
neously an admissible representation of Gfin and an admissible (g∞,K∞)-module, with both actions denoted
by π and compatible (i.e. commutative).

It is also convenient to formulate this notion in the language of Hecke algebra.

Definition 4.2.2. Suppose we have a family of vector spaces {Vi}i∈I , a finite subset T ⊂ I and each i 6∈ T
a fixed element ei ∈ Vi. The restricted tensor product of {Vi} with respect to {ei} is defined as

⊗eiVi = lim−→
T⊂S finite

(⊗i∈SVi)⊗ (⊗i6∈Sei).

Remark 4.2.3. The global Schwartz functions S (MA) is the restricted tensor product of S (Mv) with respect
to the characteristic functions on Mat(n,Rv).

Definition 4.2.4. For each nonarchimedean v, let ev ∈ H(Gv) be the characteristic function on Kv, nor-
malized by the volume of Kv. The global Hecke algebra H(GA) is the restricted tensor product ⊗evH(Gv)
with the obvious algebra multiplication, where for archimedean places H(Gv) = H(Gv,Kv).

There is an analogous definition of admissible representation of H(GA) in [JL70] using elementary idem-
potents just as in local cases, and it is readily seen an admissible representation of GA is equivalent to one
of H(GA) by the following factorization theorem (Theorem 3.3.3 of [Bum97]).
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Theorem 4.2.5. Let (π, V ) be an irreducible admissible representation of GA (resp. H(GA)), then there
exists, up to equivalence, for each archimedean place v an irreducible admissible (gv,Kv)-module (resp.
representation of H(Gv,Kv)), and for each nonarchimedean place v an irreducible admissible representation
of Gv (resp. H(Gv)), in both cases denoted by (πv, Vv), such that for almost all v, Vv contains a nonzero
Kv-fixed vector ev and that V is a restricted tensor product of Vv with respect to ev and π is the tensor
product action ⊗vπv.

4.3. Some reduction theory and automorphic representations. The global part of the theory is
essentially just “multiplying” all the local part together. Thus in order to reach a global theory, we need
to find a class of factorizable representations abundant enough in which we can always find one object that
at each local place gives the correct local Euler factor. This class turns out to be the representations on
automorphic forms, which are certain functions on GA. We first need some facts from the reduction theory
of GA.

Let T be a maximal F -split torus of G, of which the choice turns out to be irrelavent [GJ72], so we may
just choose the standard one being the subgroup of invertible diagonal matrices. Let Z be the center of
G, B the standard Borel subgroup, N = N(B) the unipotent radical of B, and G0 be the kernel of the
quasicharacter g 7→ |det g|. When dealing with their A-points, we can treat all of them as explicit subgroups

of GA, which in coordinates is a subspace of An2+1 embedded via (gij) 7→ ((gij), (det g)−1). We also use the
subscript 0 to denote any intersection with G0. One first has the fundamental result.

Theorem 4.3.1. The quotient space ZAGF \GA has finite volume.

Proof. See Section 14.4 of [Hum80]. �

Definition 4.3.2. With notations above, we denote by F (GF \GA) the (measurable) functions on the
quotient space GF \GA, and suppose ϕ ∈ F (GF \GA).

(1) ϕ is called cuspidal if for any proper parabolic subgroup P defined over F , one has∫
N(P )F \N(P )A

ϕ(ug)du = 0 for all g ∈ GA.

We denote the subspace of cuspidal elements by F0(GF \GA).
(2) Suppose ω is a quasicharacter of J, ϕ is called an eigenfunction of ω if

ϕ(ag) = ω(a)ϕ(g) for all g ∈ GA and a ∈ ZA.

We denote the subspace of ω-eigenfunctions by F (GF \GA, ω).

As we will demonstrate later, the correct representations ofGA to look at is the ones on automorphic forms,
a certain subspace of F (GF \GA), in analogue with the classical picture Γ\GR,+ (Γ a discrete subgroup).
Just as in the classical case (a visible one being that of modular forms), we need the functions to have
“good” behaviors at “cusps (infinities)” of the quotient space. Thus our hope is to construct a convenient
fundamental domain s such that GA = GF s. There are several equivalent ways to achieve this, and here we
adopt the one in [GJ72]; one can also see [PS79] and [Bum97]. We start with height functions.

Definition 4.3.3. Let T be as above, t = diag(t1, . . . , tn) ∈ TA any element, and αi(t) = ti/ti+1, (1 ≤ i ≤
n− 1) a system of simple roots of T . We define the minimal (resp. maximal) height function by

η(t) = inf
i
|αi(t)|, resp. κ(t) = sup

i
|αi(t)|.

Definition 4.3.4. Suppose X be a closed subset of J such that the absolute value is a proper map, CG
a compact subset of GA, CN a compact subset of NA,0, and η0 > 0 a real number. A Siegel domain
s = s(X,CG, CN , η0) is the subset of elements with the form h = utg where u ∈ CN , t ∈ TA with αi(t) ∈ X
for all i and η(t) > η0 (such t will be called semi-bounded), and g ∈ CG.

Remark 4.3.5. Note the proper map condition on X is a very loose restriction, for example X could be one
of those sets {a ∈ J | |av|v ≥ cv > 0 and cv = 1 for almost all v}.

Remark 4.3.6. By the semi-boundedness of t, one sees that
⋃
t t
−1CN t is relatively compact, hence we may

also write h = utg = tg′ for g′ in some fixed compact subset of GA.
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The reduction theory then gives the following.

Theorem 4.3.7. There exists a choice of X, CG, CN and η0 such that the Siegel domain s(X,CG, CN , η0)
is a fundamental domain of left translation by GF , i.e.

(1) GA = GF s.
(2) The set {γ ∈ GF | s ∩ γs 6= ∅} is finite.

Proof. See [God95], where a slightly different decomposition of a Siegel domain is used, but one can manip-
ulate it into the form we have here. �

Now we see the name height function is really justified and we can define growth speed for elements in
F (GF \GA): since s is a union of cosets of ZA, and ZA\s has finite volume by Theorem 4.3.1, one then
only needs to look at t in the decomposition of an element in s, and since such t is semi-bounded, the only
“infinity” (modulo ZA) can happen is that κ(t)→∞. More precisely, we have the following definition.

Definition 4.3.8. Suppose ϕ ∈ F (GF \GA).

(1) ϕ is called slowly increasing if for any compact subset C of GA and any η0 > 0, there is p ≥ 1 and
c > 0 such that

ϕ(tg) = cκ(t)p for all g ∈ C and t ∈ TA,0, η(t) ≥ η0.

(2) ϕ is called rapidly decreasing if for any compact subset C of GA, any η0 > 0 and any p ∈ Z there is
c = c(p) > 0 such that

ϕ(tg) = cκ(t)p for all g ∈ C and t ∈ TA,0, η(t) ≥ η0.

We can now define the notions of automorphic form and automorphic representation.

Definition 4.3.9. An automorphic form is a complex function ϕ on GF \GA satisfying the following condi-
tions:

(1) ϕ is KA-finite on the right (hence continuous).
(2) The representation of H(GA) on the space ϕ ∗H(GA) is admissible.
(3) If F is a number field, ϕ is slowly increasing.

We denote by A (GF \GA) the space of automorphic forms and, for each quasicharacter ω of F×\J, by
A (GF \GA, ω) the subspace of ω-eigenfunctions.

Definition 4.3.10. An automorphic representation of GA is one that can be realized as a component of
A (GF \GA, ω), where ω is some quasicharacter of F×\J.

Remark 4.3.11. The second condition for automorphic forms is in terms of Hecke algebra. We adopt this
because it gives directly the property we want: any irreducible automorphic representation is admissible. If
we replace it by the condition that ϕ is Z∞-finite where Z∞ is the center of U(g∞), we get an equivalent
definition purely in terms of the group [BJ79].

Definition 4.3.12. A cusp form is an automorphic form that is cuspidal. The space of cusp forms is denoted
by A0(GF \GA) and ω-eigenspace by A0(GF \GA, ω). Similarly we define a cuspidal representation to be
one realizable as a component of A0(GF \GA, ω).

One of the reasons we look at admissible representations at all is that in general not all interesting
representations of GA can be made unitary (e.g. Eisenstein series according to [Bum97]); however, for a
cuspidal representation, unitarity is always possible up to a twisting.

Lemma 4.3.13. Suppose ϕ ∈ F0(GF \GA, ω) for some quasicharacter (resp. character) ω of F×\J.

(1) If F is a number field, and ϕ is slowly increasing (resp. square integrable modulo ZAGF ), then ϕ∗f
is rapidly decreasing for any f ∈ H(GA).

(2) If F is a function field, and ϕ is K-finite on the right, then ϕ is compactly supported modulo ZAGF .

Proof. See [GJ72], Lemmas 10.8 and 10.9. �
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Suppose ω is now a (unitary) character, let L2(GF \GA, ω) be the Hilbert space of ω-eigenfunctions that
are square-integrable on ZAGF \GA (note it is well defined since ω is a character), and L2

0(GF \GA, ω) the
closed subspace of cuspidal elements. GA has a natural (actual!) representation on such spaces by right
translation. Lemma 4.3.13 allows us to prove the following.

Proposition 4.3.14. Suppose ω is a character of F×\J, then L2
0(GF \GA, ω) decomposes into Hilbert space

direct sum of unitary irreducible admissible representations of GA. Moreover, A0(GF \GA, ω) is the dense
subspace of K-finite and Z∞-finite (when F is a number field) vectors, and decomposes into algebraic di-
rect sum of preunitary (contained as a dense subspace of a unitary representation) irreducible admissible
representations of H(GA).

Proof (sketch). By definition, any cusp form ϕ can be written as ϕ ∗ f for some f ∈ H(GA), hence by
Lemma 4.3.13 it is always rapidly decreasing hence belongs to L2(GF \GA). For function fields one can
prove the representation on L2

0 is admissible as in Corollary 10.10 of [GJ72], while for number fields it
involves a more subtle decomposition of L2

0 into eigenspaces of Z∞. For more details one can see [GJ72]. �

Corollary 4.3.15. Suppose ω is a quasicharacter of F×\J. The representation of H(GA) on A0(GF \GA, ω)
decomposes into a direct sum of irreducible admissible representations.

Proof. By twisting the representation on A0(GF \GA, ω) with |ω(det(·))|−1/n, we get a unitary one hence
have a desired decomposition by Proposition 4.3.14. Twisting it back we get the result. �

Since the contragredient to the representation on A0(GF \GA, ω) is just the one on A0(GF \GA, ω
−1), and

the coefficient f determined by ϕ ∈ A0(GF \GA, ω) and ϕ̃ ∈ A0(GF \GA, ω
−1) is the integral

f(g) =

∫
ZAGF \GA

ϕ(hg)ϕ̃(h)dh. (4.3.1)

In view of the zeta integral (2.1.1), one may just assume ω is always a character.
Finally, the following result (from the supplement by Langlands to [BJ79]) , analogous to Theorems 2.3.9

and 3.2.4, is needed for parabolic induction.

Theorem 4.3.16. Every irreducible automorphic representation π is a component of IndGA

PA
σ = ⊗vIndGvPv σv

for some standard parabolic subgroup P of type (n1, . . . , nr) and a cuspidal representation σ = �1≤i≤nrσi of
PA/N(P )A.

4.4. The final blow. The proof of Theorem 4.1.1 in the cuspidal case follows a similar path as in Tate’s
thesis [Tat67]. In this subsection all omitted proofs can be found in Sections 11–13 of [GJ72].

First of all, let {λ0, λ1} be a smooth partition of unity on R×+, satisfying λ0(t) = λ1(t−1) and that λ0 is
supported away from 0 and equals 1 for all large t. Suppose ω is a character of F×\J, s ∈ C, and V a finite
dimensional vector space (over F or A). For i = 0, 1, we define two linear functionals on S (VA):

〈θi(s, ω),Φ〉 =

∫
F×\J

∑
ξ∈VA−{0}

Φ(aξ)|a|sω(a)λi(|a|)da,

〈θ̌i(s, ω),Φ〉 = 〈θi(s, ω), Φ̂〉.

Lemma 4.4.1. With the notations above, the integral 〈θ0(s, ω),Φ〉 converges for all s and uniformly for s in
any compact subset of C. Moreover, the function (g, s) 7→ 〈θ0(s, ω),Φ.g〉 on GA×C is holomorphic in s and
slowly increasing in g, where (Φ.g)(x) = Φ(gx). The same holds for θ1(s, ω) as well when <(s) > dimF (VF ).

Proposition 4.4.2 (Poisson summation formula). Suppose VA/VF has measure one and Φ ∈ S (VA), we
have ∑

ξ∈VF

Φ(ξ) =
∑
ξ∈VF

Φ̂(ξ).

Proof. This follows from the general result for locally compact abelian groups, and the fact that F is discrete
and cocompact in A and the quotient A/F is the Pontryagin dual to F [Tat67]. �
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Suppose now VA = MA, for each 0 ≤ r ≤ n and i = 0, 1, we also introduce the following functionals:

〈θir(s, ω),Φ〉 =

∫
F×\J

∑
rank ξ=r

Φ(aξ)|a|sω(a)λi(|a|)da.

Note that θi =
∑n
r=1 θ

i
r and the inner summation in θi0 is just Φ(0), so θi0 is also defined for any VA. With

the help of Proposition 4.4.2, we can relate θ0 with θ1 through a basic calculation.

Corollary 4.4.3. Suppose ω is a character of F×\J and Re(s) > n2, we have

θ1(s, ω) = θ̌0(n2 − s, ω−1) + θ̌0
0(n2 − s, ω−1)− θ1

0(s, ω),

as well as

θ1
n(s, ω) = θ̌0

n(n2 − s, ω−1) +

n−1∑
r=1

θ̌0
r(n

2 − s, ω−1)−
n−1∑
r=1

θ1
r(s, ω) + θ̌0

0(n2 − s, ω−1)− θ1
0(s, ω). (4.4.1)

Proof of Theorem 4.1.1. Suppose the matrix coefficient f is the one specified in (4.3.1) we can formally
rewrite (2.1.1) into

Z(Φ, s, f) =

∫
GA×(ZAGF \GA)

Φ(g)ϕ(hg)ϕ̃(h)|det g|sdgdh, (4.4.2)

the left-hand side being an iterated integral and the right-hand side a double integral. To prove (4.4.2), one
has to study the following integral:

Z(Φ, s, ϕ) =

∫
GA

Φ(g)|det g|sϕ(g)dg.

This integral is provably convergent for <(s) > n. If we choose a finite set of representatives gi, 0 ≤ i ≤ l so
that GA =

⊔
i ZAG0gi (disjoint union of cosets) and let G′ =

⊔
iG0gi and G′′ = G′−1 =

⊔
i g
−1
i G0. Note G0

is normal in GA so G′ and G′′ are both unions of left and right cosets of G0. Then a bunch of calculation
(with some argument about convergence and the help of (4.4.1)) will show that when <(s) > n

Z(Φ, s, ϕ) =

∫
GF \G′

ϕ(g)|det g|s〈θ0
n(ns, ω), g.Φ〉dg +

∫
GF \G′

ϕ(g)|det g|s−n〈θ0
n(n2 − ns, ω−1), Φ̂.g−1〉dg

+

n−1∑
r=0

[∫
GF \G′

ϕ(g)|det g|s−n〈θ0
r(n

2 − ns, ω−1), Φ̂.g−1〉dg −
∫
GF \G′

ϕ(g)|det g|s〈θ1
r(ns, ω), g.Φ〉dg

]
,

where g.Φ means the right translation by g. The terms in the two summation parts are provably zero when
ϕ is a cusp form. Hence, by a simple change of variable in the second term, we get when <(s) > n

Z(Φ, s, ϕ) =

∫
GF \G′

ϕ(g)|det g|s〈θ0
n(ns, ω), g.Φ〉dg +

∫
G′′/GF

ϕ̌(g)|det g|n−s〈θ0
n(n2 − ns, ω−1), Φ̂.g〉dg.

The right-hand side exists for all s and hence by Fubini-Tonelli, we establish the absolute convergence of the
right-hand side of (4.4.2) hence also the equality. A little bit more calculation gives the symmetric expression
for (2.1.1) we desired, valid for <(s) > n:

Z(Φ, s, f) =

∫
(G′′/GF )×(GF \G′)

ˇ̃ϕ(h)ϕ(g)|det gh|sdhdg〈θ0
n(ns, ω), g.Φ.h〉

+

∫
(GF \G′)×(G′′/GF )

ϕ̃(h)ϕ̌(g)|det gh|n−sdhdg〈θ0
n(n2 − ns, ω−1), h.Φ̂.g〉.

(4.4.3)

We also have a similar one for Z(Φ̂, s, f̌) using change of variables. (4.4.3) allows us to analytically continue
Z(Φ, s, f) to all s and its symmetry gives the functional equation (4.1.1). This concludes the proof of the
first claim of Theorem 4.1.1 for cuspidal representations.

To prove the second claim, one needs to connect the global zeta integral to the local ones, specifically the
ones that generate all local L-factors. According to Theorem 4.2.5, for almost all places v, πv is spherical,
hence its L-factor is generated by Φv being the characteristic function of Mat(n,Rv). Thus it is easily shown
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there is a finite set of indices Jv such that for almost all v Jv contains only one element, and that for each
j ∈ J =

∏
v Jv there is a Φj =

∏
v Φjv ∈ S (MA) and a coefficient fj =

∏
v fjv , so that∑

jv∈Jv

Z(Φjv , s+
1

2
(n− 1), fjv ) = L(s, πv),

and hence ∑
j∈J

Z(Φj , s+
1

2
(n− 1), fj) =

∏
v

L(s, πv) = L(s, π).

We also have a similar result on the contragredient side. The second claim is then obvious, and Theorem 4.1.1
is completely proved for cuspidal representations.

To finally prove Theorem 4.1.1 for automorphic representations, one uses Theorem 4.3.16 and the familiar
argument of parabolic induction, during which we need to note that, for almost all v, IndGvPv σv has exactly
one component πv that is spherical, so we have L(s, πv) =

∏
i L(s, σv,i) by Propositions 2.3.3 and 2.5.2. One

may also need to utilize the denseness of S0(MA) in S (MA) if F is a number field. �

4.5. Global Example. In this last subsection we provide some connection between the classical L-functions
of cusp forms of GL(2,R)+ and the standard L-functions of GL(2,AQ). However, we will be very brief
concerning the computation details. Nice references are [Gel75] and [GS88], as well as [Bum97].

Let H+ be the upper-half complex plane, q = exp(2πiz), Γ0 = SL(2,Z), and f be a classical cusp form
of weight k on Γ0\H+ that is also an eigenfunction for all Hecke operators. Then we know f has a Fourier
expansion

f(z) =

∞∑
n=1

anq
n,

and an are multiplicative. In this case, the L-function L(f, s) =
∑
n ann

−s can also be viewed as the Mellin
transform

(2π)−sΓ(s)L(f, s) =

∫
R×+

f(iy)ysd×y.

Assume further a1 = 1, we have the Euler product expression

L(f, s) =
∏
p

(1− app−s + pk−1−2s)−1.

Moreover, the Mellin transform may also be seen as a Hecke type zeta integral over GL(2) × GL(1) which
ultimately connects to our standard zeta integrals through the Whittaker models.

On the other hand, using isomorphisms H+
∼= SL(2,R)/SO(2,R) and, according to strong approximation,

ZAGQ\GA/KA
∼= Γ0\SL(2,R)/SO(2,R), one can translate the classical cusp form f into an adelic cusp

form ϕf via

ϕf (g) = (c∞i+ d∞)−kf(g∞(i)), g =

(
a b
c d

)
.

The representation πf generated by right translations of ϕf by GA is then an irreducible cuspidal repre-
sentation. For almost all (in this level 1 example, actually for all) p, the local component is an irreducible
unramified principal series Bp(χp,1, χp,2). One can check χp,1 and χp,2 satisfy (and are determined by) the
relations

ap = p
1
2 (k−1)(χp,1(p) + χp,2(p)),

χp,1χp,2 ≡ 1.

The global standard L-function at finite places attached to πf is then

L(πf , s)fin =
∏
p

(1− app−s−
1
2 (k−1) + p−2s)−1.

A change of variable gives

L(f, s) = L(πf , s−
1

2
(k − 1))fin.
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One can also add the archimedean parts which are (2π)−sΓ(s) and resp. change s to s − 1
2 (k − 1), as well

as the ε-factor (in this case (−1)k/2) to complete the story of functional equations on both sides.
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